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ABSTRACT

We give for D = 6 the general gauge transformations that keep
the superfield within the Wess-Zunino gawe (any component with less
than two indices of each type o,8 is absent). We built the gauge in
variant components and write down all the partial lagrangians.

Finally we briefly discuss a dimensional reduction to D = 4.

Key~words: Fielé& theory; Supersymmetry; Gauge. transformations.
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1§ INTRODUCTION

This work is complementary and a continuation of a previous
one[1] in which we discussed the gauge superfield in six dimen
sions.

The choice D =6 has for us two main reasons, namely:

In the first place, in that number of dimensions, the equa-
tions of motion resulting from the natural application of super-
symmetry are of fourth 6rder[2] for the lowest component of the
gauge superfield and this is the simplest example of a higher
order equation resulting from supersymmetry. In second place,
among the physical components of the gauge superfields we noted
the presence of several interesting fields, which we called[1]:
_graviton,.graﬁitino, photon, photino and also a complex vector
field and a real three vector, ﬁith the additional property that
we have them all unified in a single superfield.

= 6 has not only the appeal of the possibility of extended super
s&mmetrh:theoryls] and a realistic superSymmetrn:GUT[4l but for us
it provides the simplest example of hiéher order equations of
motion for phySical fields[zl. In this sense, we noted previously
that in higher order equations the potentials, i.e., the .coup-
lings of the different orders of derivatives should be . related
so as to obtain equations with physical . signiﬁicaﬁée[sl. We
think that perhaps sﬁpersymmetry is the only relativistic sym-
metry that can relate the couplings in such a way that these con-
ditions are fulfilled.

With that motivating ideas in mind we are developping the
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theory with the hope that it can provide us with ' a guidance
to get a treatment fit for higher order equations: In particular one
hopes that by coming down to fourth dimenéions with "Kaluza Kiein
procedures” ' one can obtain here fourth order differential e-
quations which have physical content. .

With regard to this last point it is wofth taking into ac-
count that by using the D + = method in a higher order invariant
equation, one obtains a second order equation as an approximation
to the exact wave equation of the theory. So in this sense an invariant
higher order equation has a second order equation as an approximatidn.
(A note on this point will be published elsewhere).

‘§2 NOTATIONS AND DEFINITIONS
For the. sake of clarity we repeat here some'definitions_ we

have used in reference [1] which are based  on ..Elie = Cartan's

book[71.

Dirac matrices in d = 6 are defined by

0
Iy = ; (2.1)
u
where %: = YH = ?u for w = 1,...,5 are five hermitian four-dimen-
sional Dirac matrices and Yo = = ?0 = .
The transposition matrix is
0 C ‘
C = A r C = Y Y C2 - - l
-C 0 275 |
{2.2)
uT
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The scalar product of two Weyl spinors of different types is

defined by

v, % = yco = scalar (2.3)

$¢ = c¢* F = ¢'cC (2.4)
Note that, while the transposition matrix € is
C = POP2P5 = the conjugation matrix (in 6D) is
C=T T -= (2.5)
In order to construct a chiral field with Weyl spinors of
the first type we take thethasmmhn variables as spinors . of
the second type 6 and 0O4.

§3 GAUGE TRANSFORMATIONS

As we pointed out in ref. [1l], the real superfield has the

general form.
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-
4 . o T o o
. -l e
ve )} B By al ot elief (3.1)
8,t=0 t°°" 78 1’ t
- a *
G, 0l ]
Aul as = Aa ut
1°° "¢ A
The abelian gauge transformation is giveh by
V! =V o+ 1 - ) (3.2)
where
D. B, $ =0 and D_D_ U =0 (3.3)
&, dz a, 6,

D&,ﬁa are the usual covariant derivatives.
By means of the transformation 3.2 we can go to the Wess-—
Zumino ‘gauge where the components of V. with less than two 1ndices of

each kind are zero. In that gauge.

& . [ VP
v= 3} 8 8 a’l ® eliiief (3.4)
L ..

We can still remain in this gauge, as can be verified, by a
transformation induced by the following general double chiral

superfield .

&

__i83B a 3 x o & o, %1,.%2 -?1
Y = & [)L+B xad-é'&w E&(,\a-iaax.) + 2i8 "¢ 65‘1'3}1“

""(3.-.5) |
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=5

where A: Aaplg are arbitrary up to the restrictions

_ % '
A = Ak a:.= (}g) (3.6)

The corresponding gauge transformation is:

0, G,. _ 61 &, a o, &, &, &
1(-v) =6 ‘o 25, 5, » Ix 2 4 10 o 25,5, 8, 5 13 2% .
'y Gp %y %y 1 %2 %3 03 %
oy G, O o &, & O O, G, - _ & .4, &
+ 16 o 20 35, 8 o 1a Za  + 0 e 20 %5, B, 8, 5 '3 22
1 %2 % %2 93 Gy Gy By 0y 0y
- & &, G, & a o, &, &, &
+%@ulghﬁu%h T R N S %e L..e 46&_ed B8y 2y By Ay
1 4 %1 %3 % 1 %2 1 %2 %3 9%
. &, G, &, &
1 % %an 1,.%2,%3.%
+ 30 1,,,0 Y6, ...0, 3 "3 %3 “A (3.7)
31 % Gy 0y Gy 0y 0
Using 3.2 and 3.4 it is easy to see that the components of v

transform in the following way:

& & ! &.&, &, &
al? . Aalaz + aalxaz (3.8)
%1% 1%2 % %
Aaia2&3'= 8,858, +“ia¢1ad2x&3;A§1az' : Aa1a2 . 1aa§a&21-
*1%2 "% . % %2 1%2%3 % %% %1 %3 %3
, . (3.9)
Aa1a2a3¢= a1a2:3 4'aQ1a§ 3231 | (3.10)
®1%2%3 G ®a%3 %) Gy %3
Al 10 % +.la?1éd23aaia4; Aa1a2a3l==Aa1a2d3-;ladlaazaa31
*182%; O1%p%3, 341 %2 % S R R R B R

(3.11)
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&.&.8.4," &, 8. 0.6, & &, &,
L 23 h a2 e % Oy (3.12)
1%2%3% 1%2%3%; H

In the right hand members of these equalities it must be under
stood that the terms containing the gauge parameters are to be

antisymmetrized for both types of indices a and &.
&,...4 B IR B &.&,6.8

It is easy'to'see that Aala d 4 ’ ~a1a2d3a _and Aa}a2a3a4
71273 1727374 1727374

can be replaced (or redefined) by linear combinations which are

gauge invariants

U %% | %i%%3% 2 % %%
alaz 3 a1a2a3 3 al a2a3

1727374 17273% 172737

@yly048,  &,4,8.8, Gi0y838, . & 4, &34,
€, a,0.8, = OF 3 a.a.0, - P aa.a,. T o la B a, (3:14)
172%3% B R 1%2%3% %1 %2 %3%

D

where again the terms with derivatives must be antisymmetrized in
both types of indices.
According to Cartan ref. [7] we can express the = multispinor

field components into its tensor components

o
Q- 7L SO B V1 Nlcr PR i TR v
A, = A Yaf + A, . -(Y Y ) (3.14)
& ' A»132u3- . /s N :
A ' is a completely antisymmetric self-dual tensor.

V1V2V3
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&. & & &,
172 BT v, 172 Ty
A = (Yy'Cy_ . (Cy") A : (3.15)
0.1(12 _ulaz uv .
& & & &, 6,484 :
1°2°3 172%3%% -y '
A = g A, (y.C) (3.16)
alaz 64 Ha,a,
G, 8, 8.4 NN
91%2%3%, 1727354 u :
(110.2 ‘Ll Ctldrz
019203%, %838, &y
Aa o o = € oo “A (3.18)
17273 1727374

Also, in particular, for Ag, we have
& _ B & SRIR ALY |
‘o T J\I.IYW:!.- * lviv2v3(% Y 7,;‘@ (3.19)

Using these formula, together with 3.8 to 3,12 we find:

2 L m _ e o 2 an
() = By * RAe ot ARy = M, {3.20)
L = P .

At = Aoy * 2o 3.21)
T L .
iy A[u-vl = gauge invariant

where (pﬁ) means symmetric part.and'[pﬁl; antisymmetric one.

PO A0 ek E ol .
ay® = Ay (cSYPa) Ay (3.22)
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LI , .
Au Au + aul:n {3.23)
A . . = gauge invariant

ViVyVs,

BY = gauge inv. (3.24)

D = gauge inv.

Bu = gauge inv,
from 3.22 | =
May a0 B M B . Moy - 45y bp
(170) g2, " = () ghy ¢ (1) g (ChY, B B0,
M B . (3.25)
== {7y C)GBAUH+ 4!]la

So, one can adjust Aa so as to have a zero "gamma trace"gauge.

ty¥e) gatt = o0 (3.26)

§4 TLAGCRANGIAN

The redefinitions we have introduced in 3.13, 3.14 to obtain
gauge invariant tensors induce modifications in the partial la-

grangians for the corresponding field components. In particular

aldi a1a2a3
this is sq. © for A and A~ . Instead there - are no
_ G0y ala2
changes for the lagrangians corresponding to the rest of the

fields.
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Let us recall the construction of our Lagrangian

o, ¢, 0.0 .
172 7374 '

(See form (24), of ref. [1]).

Where the chiral superfield strength is given'by[lr.

Let us start with the "diagonal" component terms. The la-

grangian is built from the following pmﬂ:of'wa

1%2
G 82 Y38y &) &y &8, 4y &) G54,
9 %, Pg g * g ¥y Ayiqp * Og 28 Ay,
1 %2 B8y By ey eyl ™ "8, By o0,
D8y bp8a8, &y GgBa&  8,8,4.8,
L E PR Nt I T E D M L S
oy ay BBy 1 %1928, % %2648,

but according to 3.14 we must add and subtract to the last term,

the quantity.

&y &, &34,

123 "3 “A {(4.2)
0y 0y a0,
N aloooa -
properly antisymmetrized, then D, .. " appears. in the lagrangian
1°7°° 74 & &
explicitly, and at the same time, the lagrangian of Aulaz is now
172
~ 61 a2 a344_ dl dz &sdﬁ _ al az a3a4 Oyeesl ) 81,..8&
2,2 1%, 20, Pg g * 2a$ 9. Ba . * 9 g By n. ) ¢ s &€
AL T2 FlT2 TR T2 12 1 "2 71 |
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using now 3.15 we obtain

. - VAV o P g
,Lz’z = 8a%¥a 0 3Pa%

(po)

: .y (HY) u P
+ GDA(W)I:IA -ﬂAu UAD

C120a. - 5¥3 aY0 . 4OaMsPsd ' " 0y alov]
12008333 A7 + 4ﬂAu3 3R gy + 128,32 .a[uv]a.aoa

(4.4)

The last term is the only contribution of the antisymmetric
part of Auv, which appears through its gauge invariant divergence
auA[uv]' For the symmetric part we can then choose "De Donder
gauge" BMAS = 23VA for which the lagramgian takes the sim-

pv
plest form:

SR : .'(uv), L p Alov]
uLzz 'C'A('mn""h 'Lz.z "303 h['w}a A (4.5)

It is easy to see that one can still remain in this gauge if we

make transformations generated by la such that O . 0 3% _=0

o
A similar procedure can be followed for the component Aglgza_
17273

for which we find (taking into account 3.13) '

£ = aalaazAa3a4 ; 23‘5‘136‘2Ad‘3d4 . o 1%2%3%
2,3\ %1 g ByBaBy B By a0 By J764,8,58,
8, B.B,8, B, B BB 8,8,8,8

3 43 1 %.3 4,7172731\ 1 2.3-4 (4.6)

iy + 3_ A € " E
84 a433 a3 0484 61623384
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And with the use of_3.161and the "gamma gauge” 3.26

R VTN .-Q - o, 8=
c10’3 = a1a¥a%a0s Ky « 1 A% KN

. ‘a1a2a3a4
The lagrangian for Aﬁ d is easily written down
: 172

2 JBiBaBaBf & 8y sy, 4y &, &3d
JL Za : 9 "8 _“A " +823,79 “A
2,4 na0, 0y 0, 31828334 . 81 ay a2B

N PN

&
+ 639 2

&, &, ql...a
: 3.°A '

3%, .
a,a,848,

which, with 3.17, takes the form:

= o@Mqy oV _ gHO
J;b;a 2B aua §v B 131l

o, O, 0y
For A 17273 we have

1%2%3

a6 6,8, &,
17273 & 4
‘;; 3 A" + 3, A 3 A

Using 3.14, we obtain

uv Vo

C . e
J:3’3 =FF,, with F o= 0a 5 A

(4.7)

4
o+
28384
.B
.lE' é
RERL
(4.8)
(4.9}

(4.11)



CBPF-NF-043 /89

-12-
" ~ ~HV. R
3,3 = G Guv with Guv = 9 Auvpﬂ (4.12)
& d,8,8,
For A , taking into account 3.,13:
@, 0,0
17273 :
J, . Ba1a2a3a4 13843313263 eqi...a4€ eBl.).BAe°- .
3,4 a1a284 B1 a3q48283 - al...a4 _ﬁi...84
And using 3.18 we obtain
- On Q=
L, 21805, (4.12)
Finally, with the definition 3.14
aﬁa,a =D (4.15)
§5 DISCUSSION
The gauge superfield has the following tensor content: A
second rank tensor, Auﬁ' a real vector Au and .a real self-dual
antisymmetric three-ﬁector A , & vector spinor 2% a com-
V VoV, uo

plex vectorBu a spinor B% and an auxiliary scalar field D..
It is perhaps interesting to perform a naive dimensional re
duction to four dimensions (fields independent of x,, x) “We

shall do that together with a brief comment on each of them.
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TRTATARS 8- reduces to a pseudo vector A" i A,
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The symmetric part when reduced to four dimensions (inde-
pendence of Xy s xs), gives rise to a symetric tensQr Aij'

two vectors Ai4' Ais and three scalars: A All

44 Bssr Byse
of them obeying-[_][jAu\'J = 0 The antisymmetric part appears
(see comment below 4.4) only through. its gauge = invari-
ante diyergence.which.generates a four vector . and two
séalars satisfying the usual wave egquation.

o -
reduces to a four vector-spinor Ai and two Dirac spinors

a%a? The Lagrangian is:

4757

& o a4 - a. &5 ' .
I A, +HA3 Ay (5.1)

i

with the corresponding third order equations of motion:

D"aga‘;-- 4a-jalagai' = 0 ("gravitino” eq.) §522)
O, A,y =0 O (5.3)

A%s)_is not really independent as the "gamma gauge" condi
tion (YUCJQBA5.= 0 can be used to eliminate it.
leads to a four vector and two scalar, one of which can be
eliminatel with the gauge condition.

It is easy to see that the Lagrangian 4.1l reduces to
the usual Maxwell lagrangian for the four vector A, to-

gether with the wave lagrangian for the scalar.

£ _ =4
ijk - Eijk£A , and an

antisymmetric tensor Aij4' Due to self duality Aijs is
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not independent-of_Ai.

54 and.Ai

45 is not independent

of Aijk‘
It is perharps amusing to see that the Lagran-

glan 4.12 implies:

= i jve
g = 9%a,,0R (5.4

and splitting the pseudovector part.

v e Wi sua Rjkns
dagr = 0 €iskm® 025 ° By ¢

- ﬁznf where F =3 A -3 A

2n gn = %2R0 T %uMy (5.5)

This lagrahgian gives Maxwell equations = for - the
pseudo vector ii who should be generated by pseudo
scalar charges (of the type of magnetic monopoles ), whilé
Ag corresponds to an electromagnetism generated by
charges” of "the electric type.

The other part of the Lagrangian
Lib

n - i.
33, T O Bji,00R

generates as eqs. of motion

which means that.
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aﬁau'é-.; ai¢ with ¢ = 0 (5.6)

It gives rise to a four vector Bi and two complex scalars

obeying the egs. of motion:
ig =
2aia Bj = [:]‘l?.i
and t]_‘B4 =0OB; =0

d_ B,
a o

when reduced to four dimensions it gives Dirac-massless

equations for B%,.
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