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ABSTRACT

We 1ntroduce the Multilinear Alternating Space (MAS-G) as a

N-linear map A: HxHx...xH

G oOf the Hilbert Space H.

We use the properties of the MAS-G in order to obtain the

antisymmetry of the wave function and the Paull principle.We also
discuss an alternative interpretation to the description of

creation and annthilation operators,
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1. [NTRODUCT [ ON

As 1s well known, the antisymmetry of the wavefunction v and
the Paull principle were formulated by defining the functions v
as linear combinations of Slater determinants ( 1 ). The second
quantization formalism [ 2 ] describes them 1in an elegant way
through the anticommiting operators. A different formulation would
be to use the properties of an anticommuting variable space.

The Grassmann anticomnuting algebra - which has been Known

for a 1long time by mathematiclans - was used by Berezln and
Marinov (3-4]1 to develop and 10 explore an application of the func-
tional generators method In the second quantization theory.
Schwinger (5], Matheus and Salam (6) used the anticommiting c-
Numbers in studles of fermionic systems. Since then, due to the
operational adequacy of Grassmann algebra to describe systems of

Fermions and supersymmetry, many authors have been working on this

subJjgect (3-10),.

We shall present an alternative formulation to the descrip-
tion of antisymnetric properties of wavefunction and the Faull prin-
ciple, and we show that the antisymmetry of Slater determinants
becomes a particular case of this formulation. We define the state
vectors starting from the generators of multilinear alternating
space G , which 18 introduced as a N-linear alternating applica-
tion of the Hilbert space H, A ! HX...X H— G.

We interpret differently the conventional creation and anni-
hilation operators a; and ag [2] and we sShow that the elements
e; and ey (which are equlivalent to ag and a;) can be understood

as products of generators elements of the altefnating space G.
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- MULTILINEAR ALTERNATING APPLICATION

In this sectlion we present some properties of a linear

alternating space 1n order to make clear the next steps defini-

tions [11],

Since El---'-Er' U are vectorial spaces, an application;

15 named r-linear if it is linear in each variable separately,

€y €EEj,...,€{ and n € El"‘if'er € Ex and a € R, so that
£(€gr:v s €E§*Ny .0y €p) = f(€g0.v vy €fs .-y €p)
A CITERRL IR > (2)
and
£(€qsr 1 AER v s €p) = @ E(€g, 0.0 €g -0 sy €p) (3)

We denote as -5 (Eq: ++«», EpiU) the group of r-1linear f applica-
cations.
A r-linear application £ : E X...X E ———a U 1is called

alternating when

£(€q,...1€p) = O | (4)
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1.e. whenever the sequence “h----er) has repetitions. In other
words
f(el.....eJ_l.e. €j+1r ....ek_l.e._eg+1.....er) = 0 (5)
where €{1+-+1€p, € € E.

In order that feL {E,U) be alternating, it is necessary and
r

sufficient that ¥ is antisymmetric, that is
f(ei.p.-|eJ.....ek.....er): -f(ei,---,en.n..ed,.-.,er‘) (6)

We observe that the r-multilinear alternating maps fulfil.
conditions completely analogous to those of determinants. Thus,
the multilinear alternating maps c¢an be understocd as a genera-

lization of determinants.

Proposition :

f: EX...X E—~»U s a r-linear alternating applica-
tion. Since we have an ordered basis(ys,...,Yp) at E, for each
subgoup J H { J1<llc< Jn 3 c Im = {1. 2||||.m] [ and

f(YJIOIlIYJ) = ur E U (7)
1 n .
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1f °1=Z; agtygn i, ep =§:“r1Y1 are vectors of E, we have
f(€g,...,€p) = 2 _ det (o) uy (8)
. J :

where a = (a3') 1s a submatrix of the m x r matrix trom coeffi-

cients of the vectors €5

3. SPINORBITAL IN THE HILBERT-GRASSMANN SPACE

In this section we define the spinorbitals as products among
generator e¢lements of the G - space and we show that this
definition 18 a generallization of the spinorbitals definition as
linear combination of Slater determinants.

For this purpose we shall define the vectorial space E which
we have mentioned in section 2.1, equivalent to Hilbert space H .

50, a N-llnear alternating map'ln Space H will be

A HXHX...XH ———im— g (9)

and we call the space G a Hilbert-Grassmann Space.
Now, supposing that a group of one-electron Spinorbitals
€4+ €24.+,,€p belong to H~E; and some are occupled and others are

vacant, then:



CBPF-NF-043/87

=5
I) vacuum's state: when all orbitals are vacant. It is
represented by | >

Op is the null element belong to H or a spinorbital with zero

electron,

11) One-electron: when the spinorbital |k > is occupied and all

others are vacant
Ik > = €x(1) {11)

II1) Two-electrons: when two spinorbitals €4, €p have one

electron each and the others are vacant

t 3k > = €yhex = -~ €xr€y = -1 kJ > t12)

These cases suffice to explain the meaning of a spinorbital in

the Hilbert-Grassmann space. So, we can easily generalize the state

vectors to an N-electron system.

ll'.lN ) = eiﬁead-..d\eﬁ (13)
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Using multilinear alternating maps properties (section 2.1)
we can easlily show that the vector in eq. (1) obeys the Paull

principle, that is

Il-.oi,n-J--.N) = El!\...AelJ\o.-ACJA...ACN

- el‘to uﬁe.lh- . -Aelho . .hﬁ.N

_lj-.'ll.J....l.l.lli.N) to 1¢J (14')

N

and

ll..ll.llJollN) = €1A...A€14\..-h€JA...a€N= 0 (15)

if €5 = €3 1 1% J
where ¢€ja€j 1s a tensor product.

AS 15 Eknown, the N-multilinear alternating maps can De
understood as generalization of determinants. So, when we use an
appropriate basis, Yy,¥z.,...,¥N, We can show that our N-linear

map on the Hilbert space H gives the following equation:

11...N > = s 2_det(aJ) |I> (16)
J
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where matrices OJ are the matrices N X N defined by the vector

components in Hilbert space.

As an example, let us give the state vector of a two-electron

system
|12 > = & €qa€p (17)
V2!
where
ex = 2L vrlvg (18)
1
thus
112 » = 1 nlm;‘,vlin (19)
Al

= 1 (wylyy + v18yplalwalyy +wpya)
/2

=‘/1_lv11'¥31¥1nY1 + v;‘«vg‘nan *1!1a1ra"¥gay1 + 1!131"32?3&‘13)
2

Since ygayg = 0, the first and last terms are zero; the second

and third terms are related by YJAYK =~ YRAYY K#J . Thus

112 > = & (wel vp2 -2 vp)vyayp (20)
Y2
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where the term inside parenthesis 1s the Slater determinant of a

sSystem with two electrons.

4. ANNIHILATION AND CREATION ELEMENTS

In this section we define the annihjlation and ecreation
elenents c; and €y in a space of anticommuting variables, and we
Show that these elements fulfil the same properties of conven-

tional annihilation and creation operators ay and a;

' t
- 1) Annihilation Element - egp

1.
As 1in a conventioanl case, an annihilation elewment €g removes

or annihilates an electron in the K-th orbital

ak.kam = Yiam (21)

and

+ t
Exikjm > = GRdCRJ\CJ!\Cm (22)
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then we have the equivalence

+ +
x and &g — . €x (23)

The annihilation element is thus defined in the conjugated G+

Space.

a) Annihilation Elements Properties

Due to the definition of a multilinear alternating space

generator

+ +
t:JIkJm > = EJAERAE jAEy

.1-
T - €EyRCyAEgAEy = -—€gafy = - [Km > (24)

We define as zero, the annihilation of a vacant spinorbital

cI | Jkm > | > (25)

From this definition we have
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el 1> = elaeyixims = 0 (26)

Thig 18 easlily generalized for more than two annihilation

elements. Thus,

A i &

€xa€y 1K > = EgA€ r€gAEpaEy = € = M > (27)
+ ot
€yneyp Jikm > = -|m > (28)

.1..
As we stated, the znnihilation elements €y and the annihi;ation
operators agx share the same anticommtation properties. From

equations (20) and (29), we have

¥+t T + ot

clnek + €RA€1 = iel.ek I =0 (29)
which has the immediate consequgnce that

e;nei = &g = 0 (30)

It means that one electron in the k-th orbital can be anni-
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hilation element €x find a vacancy. It 18 precisely the Pauli

principle.

b) Creation Element - €p

After having defined an annihilation element, it should be
Possible to introduce a creation element ex too, which creates a
particle in the vacant k-th spinorbital.

We introduce the creation element €x 4as the adjoint of the

annihilation element ey . In analogy with equation (25), we

define ¢ as

e |1gm > = [Kijm > (31)

wilth the properties

™
ol

v

L1}

ex 1K > ;  €xim > = €gagg = lkm > (32)

however, by the Paull principle equation (5)

exIKm > = €xAEgagn = O (33)
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-r
We can also defire a mixed product of €k an €g too.

For example.

emae; K> = € = 1m> (34)

+ +
ekaemlkﬁ EprEmacyg = —e;nekaemz -im > (35)
Therefore
¥ + . oL
ERA€ * €paex = f€g, €t = O 1f m#£ k {36)

When m = K we have

in >

E—l‘
n
b4

emae$| ? o 3 e&aeml > = ¢ .(37)

and

eﬁaem lm > = O : emne; im> = |jm> (38)
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Hence
efreg + egren = tef emd = Spm (39)
The adjoint of equation (32) 13 defined by
< Klm| eI = ¢ 1Kklm| (3+0)

- HARTREE-FOCK ELECTRONIC GROUND STATE ENERGY
wWe shall apply what precedes 1o estimate the energy Hartree-
Fock ground state energy of a N-electiron

Il-llN) H elﬁ-..ﬂeN (41)

we define one-electron operators through the creatloﬁ and

annihilation elements:
.1.
h = 7~ hyg €q4€k (42)
ik

1
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For the one-electron dperator we have

< 1...N| h [1...N> = 33 hyy <i...N| egacyit...N >
1J

= 2  hyy < 1...Nldyy - 93551|1---N > (44)
1J

vhere we used equation (39) in order to move €; to the right

side,

+
<1l!lNihl1.ilN) = z nlJ(élJ <1‘.|N11|||N> = (1--.NI€J“€1I1-..N>)
1J
(45)

Let us remark that < 1,..N|i1...N > = 1 and the second term 15 zZero,

because

€x jL...N > = ERAEIA . . AERA. . .AEN = 0 (46)
Thus

< 1...Nl h j1...N> :lZJ:n“ 314 =z;n1 (47)

Where h; 1s the expectation value of the one-electron core
hamiltonian corresponding to the molecular orbtital in Eq.(43).

~For the two-electron interation term we define the following ope-

rator,
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+ 1
g =1 EE:: S1gkm €142€ A Egrcn (48)
2 1jkm
* * .
915km - f"i vy_1 vgvg drydr, | (49)

F12

The contribution to the total energy due to the . repulsion

between electron is hence written as

t
: <_1|-|N| gllc--N > H glJRm( 1.-.NI€1A€J‘€R‘€EI 1. U.ON >
' EJ;;%

(50)

Using the same arguments as for the one-electron case, we have

+ ot +
< lunnNI elﬁeJﬁekﬁemll...N > = 6JR< 1-|¢NI 81ﬁ€m‘1-..N >

F ' +
= < 1. Nlegrega€yaepll. . .N >
.l-
= 6Jk.61m< 1...N|i...N > ~- dJR 1...N le€preqt 1...N >

+ t
- dJm £ 1.--NI el‘ekl 1-.0") + < 1--.N |€1*€kﬂ€Jl 1.--N 2

= éJk-éim - 6Jm-6lk (51)
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As In the first term J = Kk, 1 -m and in the second term J = m,

1 = Kk

< 1...Nl g I1...N> =4 2" (914 ~ 941) (52)
2 1J

Integrating over spin variables in the terms hk' glJ and ng we

have the terms Hk' JlJ' KIJ

< 1...N| hi|l...N > {53)

"

[
y
w

and

< 1...N| g I11...N> = 27 (2F34 - Kyy) (54)
13

where JIJ and KlJ are the Coulomd integrals and exchange

integrals, respectively,

The total electronic energy 18 then

< 1...Nl h + gl1...N> = 23 Hy +3 (2J35 - Ky5) (55)
-1 1J
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which 18 the well known expression of the Hartree-Fock total

electronic energy for a closed shell ground state.

In short, we see that the antisymmetry of the wavefunction
built from Slater determinant is contained within a more general
mathematical structure.Elsewhere we shall show other aprlications

concerning quantwn chemistry.
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