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Abstract

The fermion determinant for the generalized Schwinger model is
explicitly computed, using point-splitting regularization, and, from
it, the Wess—Zumino functi.onal for that theory is obtained. The rela-
tion between our results and those that have already appeared in the

literature is also drawn.
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Our main purpose in this note is to give an alternative derivation of
the fermion determinant for the generalized Schwinger model (GSM). This
fermion determinant has been computed by a number of authors [1,2,3,4]
and it has proven to be very useful either in testing comsistency of two-
dimensional gauge theories [3] or in proving its equivalence with a general-
ized sine-Gordon model (in the massive fermion case) [4]. However, there
is a lack (to our knowledge) in the literature of the same computation us-
ing Schwinger’s point-splitting technique [5] that should be compared with
previous results. We performed this calculation and show our findings be-
low and it checks with the particular cases of the standard (SSM), axial
(ASM) and chiral (CSM) Schwinger models, presented in Jackiw’s lectures
[6). Further, we present the Wess—Zumino functional for the generalized
' model, which also agrees with the known expressions for the restricted
models above mentioned. The relation between our results and those of
other groups [3,4] is also given. |

The GSM is defined by the Lagrangian density (in two dimensional
Euclidean space) [7]

£= —1F% + T3, (0, + cnduPs + euAP) ¥, o)

The covariant Dirac operator appearing in (1) can be rewritten as

D = y*(i8" + B,(y; 94,9-))6%(z — ¥), (2
where
IB,,(:!:; 94:9-) = (940ay + ig-€au) Ao (3)

and

gs = ‘;“(GR ter). (4)
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From the identity det D = exp Trin D, the determinant is seen to satisfy

a
3y ndet D = f Pz tr [G(z, 2; Byy,] Au() (5)
%_mdew = i [ &z tr[G(z, 7 BYn) canfa(®), (6)

thus reducing the problem of computing Indet D to the one of solving the
system (5), (6) of coupled partial differential equations in g4, g- [8]. Here,
G(z,y; B) denotes the inverse of the operator D, defined by

(i85 + By(2))G(z, y; B) = §(z — y). )
The Ansatz [5,9]
G(z,y; B) = ¥ Gp(z — y), (8)

where G is the inverse of the free Dirac operator, implies, upon substi-
tution in eq. (7) and introduction of the free laplacian Green’s function,
_DFs

#(2) = [ #2'Dr(z — ') [0 Bu(z') + 763 Bu(a")] - (©)

Eq. (8) may then be reexpressed as

G(z,y; B)
= exp [—i j d*z'B,(z") (3:' +i& ) (Dr(z —2') ~ Dr(y — 3"))]
xP,Gp(z — y)

exp[-i [ #2'B,() (95 - i) (Ds(a - ) - Dely = )]
xP_Gr(z - ) (10)
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In order to cope with the regularization freedom of the theory, we sub-
stitute the traces in egs. (5} and (6) according to

tr (G(=, y; B)va)
— tr (G(z,y; B)y, exp [i (arerPy + arerP-) /: A,dz,]) , (11)

where ag and a; are arbitrary parameters which parametrize this ambi-
guity. After using the explicit expression for Gr, computing all necessary
traces, expanding Dp(z ~ y) around |z — y| = O to first order and taking
the symmetric limit z — y, we find that the differential equations (5) and
(6) become

or

—m— = F+g H 12
T
o H, 1
with
I[A] = Indet D, (14)

80, = 08, ;3”6,) Afz) (15)

3,8, + 8,0,
0

F[A] = % /d’x Auz) («—a+5,,, +

H{A] = 5‘; f &z A,(z) (sa._.s,,,,+ A(z), (16)

and a; = 1(ag * az). Solving the system (12), (13) we obtain
1 _
~TI4] = oiF+g:9-H+9-(9-) - an
1
= 92F +g49-H + ¢4(g4)- (18)

Compatibility between (17) and (18) requires the functions ¢; to be
given by
1
62 =3F g3 (19)
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This gives us the desired effective action,

i) = 4—1~ (02+2) [ 2 40) (asb - 2
-—M_ f Br A(x) (.a_s +--—-—~——) Az) (20)

= o j P {Z [(ch+ed)as +1) + (ch — el)a-] A2
-3 [(e%; + A, 2% a4 it - 2)a, 2 4 ]} (21)

This expression for I'[4] allows us to compute immediately the Wess—
Zumino functional, defined by

awz[4; 6] = [{4°] - T[4); AL = A, +08,6. (22)
~ We find
awz[A4; 4]
= g;r- [(ek+ el)(ar — 1) + (ek — e})a-] j d*2(,00,6 — 268,A,)
-ﬁ(e% —ef) f &80, 4,. . (23)

It is easy to see that expression (21) reduces to the known effective
actions [6] for the SSM (er = eL), ASM (egr = —ez) and CSM (er = 0),
and that (23) gives the correct Wess-Zumino functionals for the same cases
[10].

We would like to compare our findings with two other results, namely,
those from Alonso, Cortés and Rivas (ACR) [3] and Nadén and Wotzasek
(NW) [4]. The effective action for ACR is

WAl = o [d {%(EREL +ER4+EAL - [(az?i +e)a, 2y,

i (-4, 2% A]} (24)
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where
€L = [52:. +(€r — ez )2] 7 , (25)
R R R R
with €1, and €g being arbitrary couplings associated to the freedom of choice
of the regularizing Dirac operator of the theory. Compatibility between (21)

and (24) requires

T T
ert+ €, = er+teg,
th—8 = eh—e] and

1. . 5 1
5@nf + 8 +8) = [k +el)a +1)+(h~el)a]. (26)

The first two imply € = eg, €1 = ez, which, in virtue of (25) gives four

solutions for € and €p:

i) €,=0 or €L =eL;

The possibility of both €z and €r being different from zero is ruled out by
the non-existence of a crossed term in the right-hand side of (26). All the
remaining options imply a; = 1, a_. = 0 or, in other words, ag = a1 = 1.
Thus, from our point of view, the result of ACR seems to belong to a
different class of regularizations of the fermion determinant, which only
makes contact with our class in this special case. It would be interesting to
study the consistency requirements of the theory in our class as well, along
the lines of Ref. [3].
In order to compare with NW, we first decompose A, as

A, =0+ €.0.¢. (27)
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—6-
‘We thus obtain
Cin, 8] = [ &2 {kyn0n + nsé06 - i829=n0} (28)
with ; 2'
+g- 9+9-
Sl EYSEN [
nﬂ 4ﬂ' (a'|' 1) + 2“ a_ . (29)
and
FM( ay +1)+ %, (30)

From Ref. [4], the NW effective action is

r

Win, ¢] = f d’z { ('C + g%) $04 + (n - g—') nOy — 2= nﬂé} (31)

where « is an arbitrary parameter that accounts for the freedom of regu-

larization. Comparing (28) and (31) we obtain

2 2 2 2
i 9+9- 9+ —9-
= T an + 27 4r ’ (82)

which can be checked to give the correct expression for the fermion deter-

minant in all the particular cases mentioned above.
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