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Abstract

The basis of dry friction is discussed using an independent oscillator model
with longitudinal motion. This simple system is treated both numerically and
with analytical methods. At vanishing velocity a sliding dry friction force is
calculated which is smaller than the pinning force. At finite but not too
large velocities the system displays bifurcation, chaotic motion, resonances
at fractional and muitiple frequencies of the oscillator, and hysteresis. Dry
friction resuits from these complicated features. This force varies wildly with

velocity within this range, however, with a roughly constant mean value.
46.30.Pa, 62.20.-x, 81.40.Pq
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L INTRODUCTION

Dissipative processes are described phenomenologically in classical equations of motions
by a friction term. Usually this is assumed to be proportional to velocity {1]. This has a
quantum mechanical basis, since excitations can only be created by dynamical processes (2|
[3]. However, dry friction, i.e. velocity independent friction, is also observed [4]. It is a force
the direction of which is opposite to the velocity and with a constant absolute value while
the system is moving. When the system is at rest, say an object lying on an inclined plane,
the force takes the value necessary to keep it at rest. Tomlinson [5], in his pioneering work,
noted the fact that dry friction can only appear in a composed system, such that part of it
displays quick motions even when the system as a whole moves arbitrarily stowly. Several
models based on this idea have been discussed [6] {7], in particular an oscillator which moves
perpendicular to the gliding surface [6], a coupled chain along this surface [8] [9], and films
sliding on each other [10]. A quantum mechanical model of dry friction has been proposed in
connection with experiments with the scanning force microscope [11] A microscopic model
was introduced [12] to describe dry friction in micromagnetism [13].

In this work a single oscillator tangential to the surface is considered. This simple model
is treated both numerically and with analytical methods. It is found that the movement

presents features which have not been discussed in this context.

II. THE MODEL

Consider a system which as a whole moves with constant velocity V on a straight line.
A small part of the system of mass M can move separately on that line. It is coupled to the
main body by an elastic force. Its position is X, while that of the main body is Vit at time

t (Fig. 1). Thus the coupling energy is
(M/2)Q¥X — Vi), 1)

The small part is also subject to an external potential which can be taken to be periodic as
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~C cos(2xX/A). (2)

While the main body moves steadily, the small object drops periodically into a potential
minimum. Subsequently it is dragged out again. The motion of the main body can be
arbitrarily slow, and yet the small object makes a fast motion while it is falling. This
produces an energy loss by viscous friction. For the system as a whole this is an energy
loss per unit distance F', which results effectively in a term of dry friction. An evaluation of
the friction coefficient, 4 = F/F p¢act, requires a model for the dependence of C on the
contact force Feontact- We do not specify the physical interpretation of the small object,
which might be a single atom capable of tangential oscillations, or a macroscopic part of the

solid, say a piece of a rubber tire with this property.

III. PURE DRY FRICTION

Let the velocity V' of the main body go to zero, V — 40, but consider times which are
large so that Vit = L is finite. In this case the main body is eﬁ'etgtively at rest during the
fall of the small object into a potential minimum. At all times except during the fall the
small object is in a minimum of the total potential U/(X,t) which is the sum of (1) and (2).
The drop begins when the second derivative d?U/dX? changes sign, i.c. when it vanishes.
After a dropping motion the small object is again at a potential minimum. When there are
several minima in U(X,¢), the question in which it comes to rest can only be solved using
the equations of motion. Let us assume that the viscous friction is sufficiently large so that
the small object comes to rest in the next minimum. In this case the following problem is
to be solved: from dU/dX = 0 and d2U/dX? = 0 we obtain the positions L, and X of the
system and the object, respectively, at the beginning of the drop. With the value Ly we
look for the next larger value of X = X, which satisfies dU//dX = 0. The energy dissipated
during the drop is

AW = U(Xy, Ly) — U(Xy, Lo). (3)
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Xo, Lo and U(X,, Lo) can be evaluated analytically. Let

4x3C
= MOIA? (4)

be a dimensioniess measure of the strength of the periodic potential compared to that of the

spring, then
Xo= 3+ axccos (~1/c) (5)
Lo= 5= [VE—T+ arccos(~1/e) (6)
U(Xe, Lo) = (& + 1) MQ2A?/(8x%). (N

Here Ly — X, i3 positive, since V = 10; however, an integer multiple of A can be added to
Lo, Xo and X;. U(X;, Lo) is evaluated numerically. The dry friction force F is defined
as the dissipated energy per unit length, ie. F = AW/A. In Fig. 2 the solid line shows
f = F/(MQ?A/4x?), as a function of ¢ — 1. Note that AW = 0 for ¢ < 1, since in that case
PU(X,L)/dX* = MQ*ccos(2rX/A) + 1] > 0, so that no instabilities can occur. It can
be shown that in the range 1 < ¢ < 4.603 the potential U has onl;r one minimum after the
inflection point from which the drop starts. Limiting cases for the férce f(c) can be treated
analytically with the following results:

fe=2e-1 B+ B o(e-1)) fore—1<1 (8)
2 5 175 '
and
f=2rc—-2x*+ ‘3”"3‘, x4 O(c¥)  forey 1. ()

Note that MQ*(L - X)) is the external force that has to be applied to keep the velocity
V constant. If the friction force at any time turns ont to be larger than the available
external force, the system will stop, i.e.“get pinned”. This happens, when the external force
is less than 2xC/A. When the external force reaches this limit, the spring is expanded to
alength D = L — X such that MQ?D = 2xC/A. In dimensionless units the corresponding
force F, becomes f, = 2xc which is shown in Fig. 2 by the dashed line. Once this force
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is overcome,the quasistatic movement of the system requires an average force f < f,. The
force F, is to be identified with the so called static friction force, while F' is the sliding
friction force.

One might think that the energy loss during a jump cannot exceed 2C. This, however is
not correct. In fact, if C 3> MQ?A?, when the spring jumps to the next equilibrium position
at a distance of about A, the dissipated energy is MQ2DdD ~ MQ?DA = 2xC. We see

that in this case it is the energy of the spring which is dissipated.

IV. DYNAMICAL TREATMENT

A dynamical treatment is required to solve the question whether the small object stops
in the next minimum or proceeds further, and it is also indispensable when the system has

a finite velocity. With the potentials (1) and (2) the equation of motion for the small object

becomes
£X dX 2x_, . (2%xX \ '
M=+ MAS + X Csin (T) +MP (X -VE)=0 (10)

where A is the coefficient of viscons friction. With dimensionless variables and parameters
and with = dz/dr, (10) becomes
2+ az+csin(z)+ 2 —~vr=0. (12)

This nonlinear differential equation is to be solved numerically for some initial conditions
{z(0),#(0)}. Numerical solutions show that for a sufficiently large damping coefficient a,
and after a time 7 > 2r /v, the function z(r} — vT usually becomes periodic with period

2znfv (n integer):

z(r + (2zn/v)) = 2(1) + 2xn. (13)
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The integer n depends on the values used for the parameters ¢, @ and v and the initial
conditions {z(0),2(0)}. However, the nonlinear Eq. (12) gives rise to chaos for certain
ranges of the parameters ¢,v and a. Fig. 3 shows a phase portrait (2 vs z =2z — vr + av)
which characterizes the oscillation. Fig. 4 displays the values of z — vr for integer multiples
of periods. This stroboscopic representation makes the bifurcations and chaotic motions as
a function of v apparent. One can easily see the regions of chaotic and regular solutions.
For periodic solutions the energy dissipated in an n—cycle is AW = (MQ?A?/4x))Aw

where
2wnfv
Aw = afo & dr (14)
or, using the force of the spring,
2xn v
Aw = —vr)ed
w fn (z — vr)z dr (15)
or, using Eq. 13,
Innje
Aw = vfo zdr — 2xn?. (16)

-

A numerical evaluation can be tested by using the formulas (14) to (16), which should give
the same result once a periodic solution is attained. The average force over the unit distance
is F = AW/(nA). Fig. 5 shows f = F/(MQ2A/4x?) as a function of v. The contribution of
the viscous force due to the constant velocity v is represented by the dashed line; the excess
over the dashed line is the dry friction force.

V. LARGE VELOCITIES v > 1

The numerical results are rather complex. It is rewarding to note, however, that several
features can be understood analytically.

Let us rewrite (12) in the following form

Z = —z~ ai — csin(z) cos(vr) — ccos(z) sin(vr) (17)
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where z = z — v7 + av and the time 7 is shifted by a . Equation (17) describes a damped
harmonic oscillator which is driven parametrically by the external oscillating force k(z,7) =
—csin(z) cos(vr) — ccos(z) sin(vr). The case v > 1 corresponds to the situation when the
frequency v of the external force k(z,7) is much larger than the natural frequency of the
oscillator which is equal to 1 in our units. We now apply a well known technique which is
historically connected with the problem of the Kapitza pendulum [14]. We assume that the
motion separates into a smooth part $(7) and a small but rapidly oscillating (with frequency
v) part {(1), i.e. we write z(7) = ®(7) + £(7) where |£(r)| € 1. Expanding (17) in powers

of the small parameter {(r) we get up to linear terms in ¢

$+¢=—&— ¢~ ab - of — csin(®) cos(vr) — cf cos(®) cos(vr)
—ccos(®) sin(vr) 4 of sin(¥) sin(vr). (18)

Now we separate Eq. 18 into terms that are either fast or slowly changing in time. The fast

terms satisfy approximately
£ v —csin(® + vr) (19)

because the other fast terms contain a small factor ¢, while the term f is not small, since it

is proportional to the large number v?. The oscillatory solution of (19) is
(1) = csin(® + vr) /v (20)

The equation for the slow variable &(7) can be obtained taking the mean value of (18) over
the period (27 /v) of fast oscillations. The result is

® = ~® — a® — (cf cos(®) cos(vr)) + (cf sin{®) sin(v7)). (21)

The physical meaning of the last two terms in (21) becomes evident if we use the solution

(20) and write (21) in the form

«b:—aé—é——‘ﬂ;—— (22)
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where the additional “effective potential” G is a “mean kinetic energy” contributed by the

fast variable

3
e = £l (23)
From Eq. (20) then follows G($) = ¢?/(4v?). Thus, in our case, G(%) is independent of &.
It follows that the fast variable is decoupled completly from the slow variable in the leading
order of expansion. Then, from (22), #(r) — 0 after some transient period.

For the problem of dry friction we write the average damping force as

fma [ i = fgo + fary (24)
where
frine =3 [ " o dr = 2ma (25)
and
fuy=e] " s dr = "::2 S (26)

To get the last part of (26) we put z = £ and we used (23). The lead;ng term in the friction
force (24) is f, ;5. which is proportional to the velocity v and represents standard viscous
friction. The contribution of dry friction fdry diminishes for large velocities as v~3; it is
due to the kinetic energy of the fast variable {(7). The solution (24) is plotted in Fig, 5.
The comparison with the numerical results shows that (24) is a very good approximation
provided that initial conditions are chosen in such a way that a system evolves towards a

low amplitude attractor in which it is not excited by non linear parametric resonance. (see

discussion in Sec. VIB and Sec. VIC).

VL SMALL POTENTIAL: c < 1

There are several analytically solvable cases in the limit ¢ < 1, i.e. when the amplitude

of the periodic potential (2) is small enough.
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A. Resonance at fractional frequencies

We will assume that z = z; + z; + 23 + - - - where 2z, ~ ¢™ and | z,, |« 1. Expanding in

(17) the functions sin(z) and cos(z) in series of powers of z and equating equal powers of ¢,

we get
Z3 = —z3 — azy — cz; cos(vT). (28)
Zy = —z3 — azz — cz3 cos(vr) + (c/2)] sin(vT). (29)

The solution of (27) is (see Appendix for the explicit form of all parameters)
21(1) = cA; cos{vr + A,). (30)

It possesses a standard resonance peak at v = 1. Using (30) we can write the solution of

(28) as (see Appendix)
z2(7) = A[B: + Az cos(2v1 + A;)). (31)

The solution (31) possesses a resonance pesk for v 2 1. Using (30) and (31) Eq. (29)
becomes (see Appendix)

z3(7) = [Cy cos(vr + 73) + A cos(3vr + As)]. (32)

The solution (32) possesses a resonance peak for v = §.

The self-consistency of the above method requires | z; |« 1. After some algebra we found
for @ < 1 the following particular conditions in the neighbourhood of varion.s resonances:
the resonance at v 2 1 requires c/a < 1, at v & } we need 2c*/(3a) < 1 and at v & 1 the
condition is 5¢*/(8a) <« 1.

The contribution of the above resonances to the dry part of the friction force f becomes
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2w /v
fdry = a./:' Zdr ~ xav)  m?AL(v). (33)

To get the last part of equation (33) we used our solutions (30, 31 and 32) and we neglected
small contributions coming from the amplitudes B, and C3. It is clear that due to the
resonance form of (30, 31 and 32) a large value of dry damping can result even from small
values of the strength parameter ¢ provided that the velocity v is near one of the resonance
values 1, 1, 1 etc. The comparison of the formula (33) with the numerical results is
presented in Fig. 6. We have chosen such values of the parameters ¢ and a that peaks at

o

b -

v and v & % can be seen easily. On the other hand for the chosen sets of parameters
the condition ¢/a < 1 is not fullfilled; this leads to evident differences between analytical

and numerical results for » > 0.6.

B. Rescnance at multiple frequencies

Besides the above resonances at fractional frequencies we observe also peaks forv ~ 2,v ~
3 etc (see Fig. 7) that follow from a combination of parametric resonances and nonlinear
terms in Eq. (17). For example the presence of the parametric resonance for v & 2 can be

easly understood if we linearize Eq.(17) to the form

Nr

A2 —z — az — csin(vr) — cz cos(vr). (34)

Then we can use the standard theory of the parametric resonance [1], i.e. we look for the

solution
z(1) = a(7) cos(vr/2) + b(r) sin(vr/2) + d(r) cos(vT) + e(7)sin{vr) + g(r), (35)

where the functions a(r), b(r), d(r), e(7), g(r) change slowly in time. The result is that the

coefficients a{7} and (r) can grow exponentially in time provided that

v — 2] < y/(c/2)* - a2, (36)

Thus the parametric resonance around v = 2 can appear only for
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c > 2a. (37)

The above condition was checked with numerical data. The Fig. 7 displays the fact that for
¢ = 0.45 and a = 0.25 the peak around v = 2 disappears. In agreement with the theory we
also observed in the range between a = 0.25 and o = 0.2 a transition from small amplitude
oscillations with the frequency v to large amplitude oscillations with the frequency v/2 (for
v & 2).

C. Hysteresis

It is interesting that for a certain range of parameters o and ¢ several attractors can
coexist (see Fig. 3 IT). This multistability leads to the phenomenon of hysteresis: the stable
solution "chosen” by the system depends on the initial conditions, i.e. on the history of the
system. In our model we observed that the system behaves in a different way for increasing
and decreasing velocity v (see Fig. 8), or for different initial conditions z(0), #(0) (see Fig,
3). The quantitative theory of this effect needs some appro:dmatic;ns. We expand Eq. (17)

up to terms cubic in 2:
Z = —wp{T)z — az — csin(vr) — A(7)2* ~ B(r)s® (38)

where wo(T) = 1 + ccos(vr), A(r) = —(c/2)sin(vr) and B(r) = ~(c/6) cos(vr). It iz well
known [1] that if A(r) and B(7) are time independent constants, then in the case v 2 1 the
system described by (38) exhibits hysteresis if

27u*s? > 16a® (39)
where
T 8wy 12wl (40)

The parameter x describes a dependence of the system eigenfrequency ¥ = wy + xb? on

the amplitude b of the forced oscillations. This frequency shift follows from the presence of
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nonlinear terms in (38). Using explicit expressions for wy(r), A(7) and B(r) we calculated
(up to the leading order in the powers of the small parameter ¢) the time averaged value
{s?) = ¢*/512. Taking into account (39) we got the following approximate condition for the

presence of the hysteresis around the point v =1
c> Ja (41)

with J = 21/%4/+/3 ~ 2.59. Table I shows numerical and analytical data for the value oy, of
damping parameter a below which there is no hysteresis.

Fig. 8 shows f in the neighborhood of v = 1 for a below and above the critical value ay,.

VII. CONCLUSIONS

This work discusses a simple model of classical mechanics with the purpose to describe
dry friction. The non linearity of the problerﬁ gives rise to a variety of complex features,
such as bifurcation, chaotic motion, resonances at fractional and multiple frequencies and
hysteresis, which have been studied both analytically and numeriéa]ly. Actual friction be-
tween solids may result from processes which are described by more complicated but related
models, Fig. 5 suggests that an average over many contributions to the friction force may

produce a roughly velocity independent term at not too large velocities.
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APPENDIX A

The coefficients in the solutions (30), (31) and (32) can be written as
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1
‘/(1 — v2)? 4 a?y?

A1=

_ av . '
AI—a.rcta.n(vz_I)—i-—z—-mgn(l-—v)

2\/(1 - 4v%)% + 4atv?

2av . 2
=A1+a.rcta.n(4v’_1) +5[mgn(l-—4v )——1]
A
Bz = —-'2—1COG(A1)

f gv=)= + 9a%0?
K= % [A;+ Al | A4 A"" sin(Ag — 24,) m,\
As = arctan(}/p) + arctan[3av/(9v! ~ 1)] + [sign(p) + sign(1 = 9v*) - 2]x/2
A = —(A3/2) sin Ay — (A}/8) cos(24,)
p = —(A2/2)cos Az + (A7/8)sin(24,)
Co = Aru? + 07
B = —(A2/2)sin A; — (A7/4) + (A]/8) cos(24,;)

o = —By — (A3/2) coe Az — (A}/8)sin(24,)

75 = arctan(u/o) + [sga(e) - Lix/2 + A,

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)

(A14)
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FIGURES
FIG. 1. Mechanical model for dry friction. The main body moves along a straight line with

constant velocity V. A small object with mass M at position X is coupled through a spring of
frequency {1 to the main body, and to a periodic potential —C cos(22X/A). The small object drops
periodically into a potential minimum and is subsequently dragged out again. The motion of the
main body can be arbitrarily slow, and yet the small object moves quickly while falling. This
produces an energy loss by viscous friction. The energy loss per unit distance represents a term of

FIG. 2. Dimensionless dry friction force versus ¢ — 1 for arbitrarily slow motion (v — 0). cis a
dimensionless measure of the amplitude of the periodic potential. The dashed line represents the

pinning force.

FIG. 3. Phase space representation {2 vs 2 = ¢ — vt + av) for ¢ = 4.0 and a = 0.5. The ranges
-7 <2< 7, -b< 2 <5 are shown. 1. Attractor with period 2 for v = 1. II. A case of two
attractors of period 1 (the small one) and of period 3 (the larger one) for v = 2.995. They are
obtained starting with initial conditions 2(0) = z(0) = 0.5 and 2(0) = 2(0) = 0.0, respectively. IIL.

Two different attractors with period 6 for v = 2.6. IV. Chaotic attractor for v = 2.49.

FIG. 4. Bifurcations and transitions to chaotic movements become evident in a stroboscopic

plot showing 2(r) — v at 7 = 2xn/v for n = 1,2,...100, vs v. (¢ = 4.0,a = 0.5).

FIG. 5. Average friction force {f) vs velocity v. The dashed line results from the viscous
friction for constant velocity. The contribution above the dashed line is dry friction. Note that a
rough average of this is essentially velocity independent in the range where dry friction dominates.
The thin line is the analytic result for large velocities v 3> 1. The features in the figure are due to

resonances, chaotic motions, non-unique attractors, and hysteresis. Here ¢ = 4.0, a = 0.5.
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FIG. 6. Resonances at 1/2 and 1/3 of the frequency of the spring with a = 0.1. + + + for

¢ =025, ¢ooforc= 0.2, The full and dotted lines are the corresponding analytic approxima-

tions.

FIG. 7. Numerical data showing the influence of parametric resonance on the damping force.
The resonance at v = 2 is suberitical for a = 0.25 (a), while it appears for a = 0.20 (b) and

a = 0.15 (c).

FIG. 8. Hysteresis in the dependence of the damping force on the velocity v is absent in the

upper curve with a = 0.25, while it exists for @ = 0.15 (lower curve). ¢ = 0.6.
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Figure 5
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TABLE I. Comparison between numerical and analytical values of a), for various values of c.

ay, separates the ranges of the damping parameter o in which there is hysteresis (a < a3) or not.

¢ ay™ ay”
0.1 0.039 + 0.001 0.0386
0.3 0.11 + 0.01 0.116
0.6 0.21 + 0.01 0.232
1.0 0.34 + 0.01 0.386
20 0.63 + 0.02 0.772
4.0 1.12 £ 0.02 1.54
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