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Abstract

The solutions for the Skyrme model in the hedgehog SU{2) representa-
tion are analized as a function of the parameters of the model. Sum rules
obtained from the Euler-Lagrange differential equations are efficient tools for
this analysis, and use is made also of the original Derrick’s argument regarding
stability in a constructive way. It is found that the evolution of thé solutions
seem appropriately described by a specific control parameter ¢, which has
distinctive values ¢y, ¢2, ¢3, ... for solutions corresponding to solitons with
different integer baryon number 1, 2, 3, .- respectively. It is emphasized that
a dimensional parameter appears for the regular solutions, which can be taken

a8 the slope of the chiral angle. The Skyrme parameter is shown to have a
distinctive rdle, inasmuch as it denotes the instability of the classical soliton
solution with integer baryon number. Moreover, the quantization throuéh
collective coordinates leads to an expression for the energy that has a well
defined stable minimum in terms of the dimensionless Skyrme parameter for
the each integer baryon number. The main features for the lower baryon
numbers are presented for this solution. The baryon masses are obtained in
terms of specific numbers depending on ¢, the angular momentum and of the
pion decay constant, f,. There is a B=2. I=J=1 baryon with almost t;vice
the value of the mass of the B=1, [=J=1/2 case, but the state B=3, I=J=1/2
is lighter than the former. All baryons turn to be narrower with the increase
of B, even the nucleon candidate is essentially more little than the physical

nucleon. A scheme of consistent low energy approximation is suggested.

Pl
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1 Introduction

In this work we present what we believe to be a complete study of the solutions
to the differential equation of the Skyrme model 1-15ing the SU(2) hedgehog repre-
sentation for the unitary chiral field in the sector corresponding to lower baryon
numbers. From this work results a physical picture of baryonic states at the SU(2)
level of the model which, though not quite accurate for description of realistic states,
we suggest might provide the basic starting point for a consistent physical approx-
imation scheme that may bring to a satisfactory description for low energy hadron
interactions including baryons and mesons, after new ingredients are appropriately
added in several steps to the rudiments with which we deal here.

Our study was performed .mainly using the numerical solutions of the non-linear
differential equation for the chiral angle obtained with various integration packages
and also by codes we devised. They showed satisfactory quantitative agreement,
even at rather far asymptotic values. Besides, we applied the analytical solutions
by power series valid for both ends of the real half line (i.e, the radial coordinate
[1]) and also explored the irregular solution at its lowest orders. These tools allowed

to identify properly the para.rﬁeters that caracterize the solutions of the theory,
particularly the physical (solitonic) ones.

We ;upported the consistency of the whole work by obtaining sum rules from the
differential equation which provide useful information about the solutions, specially
regarding asymptotic behaviour. In the same spirit, we have applied in a constructive

way the original Derrick argument [2] that allowed to establish the conditions for
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the stability of the solutions to non-linear differential equations in varied number of
dimensions of space. In fact, we found it more powerful than we originally thought,
since it seems to indicate when a stal;le solution exists.

It is commonplace in the literature to see references to the Skyrme model as
one containing “chiral solitons from the non-linear sigma model stabilized by the
Skyrme term”. It seems to be understcod that the Skyrme term is a device to
stabilize a soliton which is already present at the level of the non-linear sigma model
lagrangean. Since this lagrangean is the effective lagrangean apt for the current
algebra déscription of the low energy strong interactions, the addition of the Skyrme
term would be something as a wanted complement to a sound driving dynamical
contribution. Pak and Tze [3] analyzed this in a wider context of current a]gebra;.
Our study shows, however, that in the complete model baryonic solitons exist only
for a very special relation among its parameters (the pion decay constant, f,; the
dimensionless Skyrme paremeter, e, and a new “size” parameter introduced below
for the analytical solutions). When this relations are fulfilled, the contribution of
the {complementary 7} Skyrme term to the classical mass of the soliton is equal to
the one from the non-linear sigma model. Besides, we confirm the result obtained
by Iwasaki and Ohyama [4] that there are not baryonic solutions for the classical
pure gon-linear sigma model in the hedgehog representation for the chiral unitary
field.

Our results made conspicuous the role of the Skyrme parameter for the complete
model which is completely undetermined at the classical level. As a consequence we

were led to reexamine the problem of stability of the solitons at the classical level,
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and found that in principle the soliton can have any mass value (while preserving its
functional stability). Associated to the Skyrme parameter is a dimensional “size”
parameter undetermined classically. The “size” parameter can be taken as the slope
at the origin of the chiral angle [1].

These features of the model had not been perceived previously [5] - [7], and they
are essential for the physical characterization of the baryonic states.

We applied the usual machinery for quantization of the model with collective
coordinates. It is found that the rotational contribution to the energy provides
stability by allowing for a minimum. This rﬁinima_l value determines a consistency
condition for the value of the Skyrme parameter, and consequently, of the *size” pa-
rameter associated with it. The baryonic states at the minimum for different angular
momentum (and isospin) labels have no free parameter other than the originally free
pion decay constant, f,.

These baryonic states, because of the constraints among the parameters, have
well defined behaviours under changes of values for the latter, depending essentially
on the dimension of the quantity of interest. These in distinction with previous
work [5] - (7], which kept a residual freedom for the parameters that turned difficult
to interpret physical results or its evolution under changes in the values of the
parameters.

The quantum baryonic minimum energy states allow, then, to make clear the
genuine content of the theory, and makes this approach attractive to evolve in the
sense of an approximation scheme for the baryon sector of low energy hadron physics_.

All baryons at the minimum quantum energy have 1/4 of its mass coming from
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the rotation contribution. This Itigh.t relationship among the different pieces of the
theory has a follow up conclusipn: for a given baryon number, all states with different
values for their angular momentum (and isospin) keep a precise rate between their
masses, determined by the simple ratio of their Casinir angular momentum operator
eigenvalues.

| All baryons are rather concentrated objects, with typical values of their radii
being 0.2, 0.06 and 0.012 fm approximately for B=1, 2, 3 (and fr= 0.129 Gev), as
resulting from their “size” parameters. This, of course, is not in agreement with the
observed fact that lower mass nuclei are extended objects with size increasing with
the baryon number. Moreover, it appears that the states B=2, I=J=1 is heavier
than the one with B=3, I=J=1/2, contrary to observed physics. |

We have not been able to establish a link between these lower baryon number
states with others referred to in previous work, as claimed by Jackson, Jackson and
Pasquier (8] in the SU/(2) case or by Balachandran et al. [9] once extension to SU(3)
is carried out.

For the B=1 state, the overall set values for the physical quantities of interest
| show that a value like 0.129 Gev for f, provide a resonable agreement for the masses
of the nucleon (I=J=1/2) and A(1232) (I=J=3/2), but the global agreement is
rather poor. The values for the gyromagnetic ratios of the nucleon states have the
. correct signs, but wrong magnitude and ratio. The choice of that value for the pion
decay constant is made to allow comparison with previous works [5] - [7], but its
meaning is quite different: for previous work it comes from a fitting procedure, i'n

our case is a pure input parameter, a nice feature coming from the theory, since
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this parameter regulates the physical values for all physical processes in the current
algebra approach to low energy hadron interactions.

The article is setup as follows. In section II we describe the solutions for the
non-linear Euler-Lagrange equation for the chiral angle of the Skyrme model in the
hedgehog representation for the unitary SU(2) chirai field. We begin by introducing
the analytic power series solution at the origin, and show that a dimensional “size” |
parameter F;, the slope at origin of the chira.i angle, has no determined value from
the classical equations. We also show that the structure of the analytic solution is
the coefficients for the regular solution for the non-linear sigma model multiplied by
a rational function of the dimensionless quantity ¢ = F,/ef,. It turns out that ¢ is
a “control” parameter for the solutions, descri bing its evolution and labelling t.hé
sector with lower baryon numbers. The model has soliton solutions at specific values
of ¢, increasing approximately with the baryon number of the soliton. They are
regular solutions at both ends of the real half line, the asymptotic value must differ
from the value at the origin by an iﬁteger multiple of . For values not corresponding
to this set of specific characteristic values of ¢, the solutions regular at one end of
| the half line are irregular at the other, i.e, not described by a power series, but rather
by an oscillatig form with decreasing amplitude around an intermediate, half integer
value of 7. We perform the same study for the asymptotic behaviour of the chiral
angle, and verify a behaviour analogous to that at the origin, but the structure
of the analytic solution is rather different. The asymptotic solution for the non-
linear sigma model appears as the leading contribution, to which others depending

explicitly on powers of the Skyrme parameters are added, in a systematic fashion.
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Again, the first non null derivative is undetermined, and we give its relationship to
F in terms of the behaviour of the chiral angle.

In section III we derive sufn rules from the non-linear differential equation an-
alyzed before, by suitable analytic manipulations. We show how the sum rules are
quite effective to indicate, from the asymptotic behaviour of the solutions, when a
specific value of ¢ related to a given baryon number appears. They complement
what can be visually observed from the behaviour of the solutions. Moreover, they
provide consistency relations for the paramet;ers of the theory.

In section IV we recall the original Derrick’s argument [2] about the stability
of the solutions of a non-linear lagrangean theory in any number of dimensions
to substantiate the results previously found. We derive a constructive way to use
this argument, and the resuits of its application coincide with the ones found before
concerning the réle of the dimensionless control parameter ¢. We find that Derrick’s
argument seems to be more useful, in the sense that it determines when a stable
solution exists, more than providixig necessary conditions for stability.

We check that the solutions are stable in the functional sense, of its second
functional derivative of the action being positive.

When we put together all results: existence of dimensional “size” parameters
undetermined at the classical level, of specific values for a control parameters to
have soliitonic solutions, we are able to show that keeping these specific values fixed
the classical mass of the solitons is wariabie at will with the Skyrme parameter.

In section V we incorporate quantization into the model in the usual manner

with resort to collective coordinates. This gives the quantum hamiltonian for the
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baryonic soliton as the one of a rotating top. From the classical indeterminacy
of the Skyrme parameter (and “size”) and the classical mass, we prove that the
quantum energy for the baryc;nic soliton has a minimum for a specific value of the
Skyrme parameter, which takes the form of a consistency condiction. We extract
and calculate several consequences of this, that were mentioned before, and discuss
the mass spectrum for the lower baryonic number minimal quantum energy states.

Section VI is devoted to the presentation and comments on the results for the
physical quantities of the nucleon state. W;a emphasize the way the behaviour of
the values for these physical quantities is predictable, according to its dimensional
character, from the variation of the sole free parameter of the theory, the pion decay
constant.

Finally, in section VII we make summary of the work and argue in favour of the
view of taking this rudimentary dynamical theory as the germ for the framing a
consistent, systematic, chiral dynamic approach to low energy hadron interaction.
In our view, f, may be taken as an overall consistency parameter for the whole
scheme, varying its value as new ingredients are included (pion mass and currents,

SU(3), etc) until it reaches its physically known value (f, = 0.186 Gev).
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2 The Solution for the Hedgehog in the Skyrme

Model

The lagrangean density for the Skyrme model reads:

= %é'f:Tl'[(akU)(akUt)] + Tr[Uf (&), UT(a,U)]z (1) ’

32¢?
where repeated indices are summed, f, is the pion decay constant (physically with
0.186 Gev value) and ¢ is the dimensionless Skyrme parameter. Introducing the well

known hedgehog ansatz in SU(2):
U =exp[in- 7F(r)] ()

with n = r/r; r = |r|, 7 the vector formed with the three Pauli matrices and

F(r) the profile function chiral angle, we have for the Euler-Lagrange equation from

Eq.(1):
1, 2 2 JZF (r) 1 dF (?')
rd + —_— a7 sin’ [F(r)] 2f, sin[2F(r)) [
+%rdi£r) - %sin[2F(r)] = f’ — 5= 8in® [F(r)]sin[2F(r)] = 0. (3)

This differential equation is singular at both ends of the real half- line. We shall
first consider its regular solution at each end, and then the leading terms for the
irregular solutions.

Lets us begin with the origin. A power series solution:
1 1 '
F(T’) Fo + F}T + é""Fgr + "-F3T <+ - (4)
exists, after substituting in Eq.(3), provided

Fy = non, ng an integer . (5)
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The next coefficient, F}, turns to be undertermined. All even powers have null
coeflicients, and the odd powers coefficients are written as a power of the first one

times a rational function of the dimensionless parameter [1],
¢ = (6)

The results have been published elsewhere {1], they are given here for complete-

REss.
4 ,14247 S
B o= 5F131+8q$’ (@
3242 4 88 44 o 448 46
Fo= 2pliaft it s ®)
711 + 2447 + 1924 + 51245
_ 544 Ny(¢?)
o= -5 D+(4?) ©)
496 1432 37008 203520 181248
N 2 - 2 4 6 8 10
2(¢°) I+ + ¢+ "+ ¢

Dr(¢%) = 1+ 404% + 6404* + 51204° + 204004° + 32768¢'°

and, in geral:

n Nzn l(¢2)
F2n+l = CanFf Hm (10)

The constants Cy,41 are the coefficients for the analytic solution of the pure
non-linear sigma model. Notice that F; is a kind of “size” parameter, since it gives
for the analytic solution the region where the chiral angle varies the more.

The irregular solutions at the origin are found inspired by the work of Iwasaki and
Ohyama [4] (from here onwards referred as [wasaki and Ohyama) for the non-linear
sigma model lagrangean density. In fact, in our case, the strongest singularities,

related the terms containing the Skyrme parameter, are quite like those of the non-
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linear sigma model at infinity. We propose:
F(r) = mo%+ar% ms(? Inyr) +--- (1)

with mg an odd integer.

Notice that Iwasaki and Ohyama put the dimensional parameters a, vy equal to
the undertermined coefficient of the regular solution. This we not do here, though
it is an interesting possibility.

Moreover, the ansatz of Eq.(11) only’ works for the leading singular terms,
O(r~3/?), The dependence on r~"/? is not cancelled by any improvement we have at-
tempted, and to our knowledge, this is a shortcoming for the ansatz in the non-linear
sigma model, also.

We have not been able to follow in detail the behaviour of the irregular solution
for quite low values of r, since we can only study it from the analytic solution at
infinity.

To handle the equation at infinity, we perform the usual change of variable:

1
= (12)
Eq.(3) reads, now:
K 4 2 dK
| 2f2 (p) + FP sin’ [K(p)] —-— (p)
el fz dK(p) - isin 2K (p))
-;éwmfmwmmmmm=o W)

where we have taken:

K(p)=F(r), r—oo. a9
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As before, we use a series expansion:

K(p) = Ko+ Kyp + sz + ,Kap 4 - (15)

2! 3

Again, to have a regular solution and eliminate the singularities, we need to have:
Ko =ngr, ne an integer . (16)

In this region, odd powers of p have vanishing coefficients, and the even ones (K4 =
0) have coeflicients written as powers of K, {which is completely undertermined from
the differential equation) and combinations with powers of ef,. The first coefficients

are:

Kg = 211, (~6720K3) (18)
1 969 408 00°

Klz - ezfg 13 1{2 (20)

Ky, = —449280K] + < ﬁ ——18 888 629 760K (21)

From this we find that the structure of the series solution is:

1
LK) = KU - TR :szl(Kz )
18888620760 oM
o2 100 K Ka) — - @)
14
- = s _2{ P 1 Jr a2 £ 2 2
= 1K (f) K'(Kap )+60(f) K*(Kyp?)

—I{m( f) K Kp?) + - . (23)
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The first fﬁnction K”(Kgp’) corresponds precisely to the series solution for the
pure non-linear sigma model that naturally controls the asymptotig solution for the
chiral angle. In the case of unit baryon number, its first coefficient, K3, is directly
related to the axial weak coupling constant, g4 [5] - [7].

The appearance of this new undertermined parameter for the regular solution
around infinity was not known in the literature until we uncovered it [1].

The irregular solution in this case is precisely the one proposed by Iwasaki and
Obyama since the leading asymptotic behaviour is given by the non-linear sigma

model contribution. That is, we have:
K(p) = mm% +a'p*’? cos (-2\/7- In v'p)+--- (24)

Notice again that there are persistent singularities O (p'i’) which are not elimi-
nated through quite natural extensions of Eq.(24).

Let us comment for the moment on the main features of the results above.

First, the appearance of dimensional undetermined parameters, Fy and K3, for
the regular solutions at origin and infinity, respectively. This property is already
present for the regular solutions in the Lagrangean for the pure non-linear sigma
model [10]. We think that they result from the fact that conditions Eq.(5) and
Eq(14) prevent the fulfillment of the Lipshitz conditions. In Several examples in
the n;lathema.tical literature, when the conditions are not satisfied, undetermined
parameters come into play [11, 12]. However, we have not been able to find a
positive statement, of the kind “whenever the Lipshitz condition is not satisfied, an

undetermined parameter results”.
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The parameter F is present in the work by Jackson, Jackson and Pasquier (8]
through a related quantity, 7. They qualify it as irrelevant, but, as we shall show,
F, plays an important réle for the stability of the quantum chiral soliton. The same
authors use a parameter A proportional to our ¢?, Eq.(6).

That this “size” parameter is important can be seen from another angle. The
numerical part of the work by Adkins, Nappi and Witten [5] (from here onwards
referred as Adkins, Nappi and Witten) can be practically taken as an attempt to
fix the value of F; and e, and this they sut;ceed to do through fitting by introducing
tk : mass of the nucleon and delta resonance as starting points and at the price of
adjusting also the pion decay constant, f,.

For the solutions of the Skyrme model with hedgehog, as we shall see, the “nat-
ural” dimensionless parameter ¢ introduced in Eq.(6) labels the solutions. This
quantity has been named A also {13].

Notice tha.f. the analytic solutions at both ends have to be an integer multiple
of #; when a solution is analytic at both ends, its baryon number should be integer
because of its regularity. It is not imposed by the topological baryon current but
rather the reverse.

What about the irregular solutions at the origin and infinity? Are they also con-
trol}ed by some undertermined parameter? This is quite plausible, since for most
values of the parameters, as we shall describe below, to a regular solution ;in one
end there corresponds an irregular one at the other, as numerical integration of the
differential equation demonstrates. We have not carried out in detail our analysis

of the link between regular and irregular solutions starting from the numerical so-
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lutions, but there seems to be a continuous variation with the parameters ¢ and F,
when working with the physical radius r, or, ¢, when working with the dimensionless
radius 7 (see below). (Eq.(27)). We present in Fig. 1 the variation of the amplitude
and phase at infinity for the irregular solution as a function of ¢.

Related to these parameters are the “natural” variables of the problem. From
the form of the power series near the origin {Eq.(4)) and “near” infinity (p ~ 0,

Eq.(15)) it looks like having as candidates:

s = Flrl (25)
T n=Kep?. (26)
There is a commonly used natural variable, introduced originally by Adkins,

Nappi and Witten:

F=ef.r. (27)
It is easy to see the relationship to Eq.(26):
s= Fyr = ¢F (28)

Notice that ¢ is the slope of the profile function in terms of 7. (See Eq.(4)). At
infinity, other equivalent dimensionless variable is familiar, but, of course, a quite
natural choice would be:
p= ;j’,— (29)
Associated to this variable, a dimensionless parameter analogous to ¢ is x =
Ka(efe)?.
We have performed the integration of the differential equations Eq.(3) and Eq.(13)

by several computer routine packages and also by assuming the knowledge of the
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regular solutions Eqs.(8) - (10) and Eqs.(18) - (22) and integrating by steps. Both
methods agree to better than 1% even quite far from the initial point (typically,
# = 1000). |

We have further used the numerical integration to test the sum rules which can
be obtained from the differential equation with moderate assumptions on the first
derivative, and also to test the application of Derrick’s theorem, as is shown in later
sections.

We have looked for the solutions varyiné F\ and e (or K; and e) or ¢ (or x). The
solutions change continuously with these parameters, and the irregular solutions
linked to the regular ones appear to oscillate with a decreasing amplitude with the
correct power.

The results can be described as follows, in terms of the dimensionless radial
variable . For values of ¢ between 0 and 1.00376 - - - the solutions regular at origin
with value F(0) = —» grow and oscillate atound —7 /2 as 7 goes to infinity.

A regular solution at inﬁnii:y, with K(0) = 0 decreases and begins to oscilate
with decreasing amplitude tending to X' ~ —x/2 as j goes to infinity. These are
represented in Fig. 1 , not to scale.

As ¢ approaches the value 1.00376 - - - the oscillation at large values for  is slower
and its amplitude grows but it still decreases with  for the solution regular at # = 0.
For the special value ¢ = 1.00376 - - - the solution is smooth at both ends of ¥ and it
is zero at infinity. This is the value used for Adkins, Nappi and Witten and many
other authors to work out the dynamical properties of the nucleon {5, 7].

For values of the ¢ in the range 1.00376--- < ¢ < 1.9650 - - - the regular solution
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a.t. the origin beginning at — increases until it begins to oscillate around F(f) = #/2.
Analogously, the solution regular at infinity where its value is zero decreases and
oscillates around K(p) = —3x/2. Only at the value ¢ = 1.9650-- - the solution is
regular at both ends and jumps 27 between them. The situation looks as the one
for the solution near the origin. Fig. 1 illustrates the behaviour for both solution.

Physically, the baryon number of the hedgehog soliton is given by
B = Ng ~ Ny (30)

and, as was apparently already known [8), there are solutions with well defined values
of B (1, 2, 3,---) only for well determined values of ¢ (¢ = 1.00376---, $2 =
1.9650---, ¢5 = 2.8882--.). These values of ¢ are usually determined thrc;ugh the
use of integration routines calculating by “shooting” procedures [5] - [7]. We can
obtain precise values using sum rules or Derrick’s theorem, as will be shown below.

One can also work with the physical variable, r, to confirm the result that ¢ is
the control parameter for the solutions (or ). Incidentally, there is a corresponding
value of x for each value of ¢ related to a given value of the baryon number (x; =

17277+, K3 = 51.673 -+, k3 = 103.8239 - - -, numbers which seem to suggest "T";L‘ =
2‘]‘3)
= )-
Physically, only solutions with the special values of ¢ are interesting. However,
what is the criterium to select one value for the couple (Fi,e)? This is precisely
what Adkins, Nappi and Witten did , as referred previously. Giving the value of

#, selecting two values out of f,, e and F is required. The two numbers chosen

to define the situation seem t0 have been f, and e, and they v?ere fixed from the
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masses of the nucleon and the A(1232) {with a convenient, unphysical value of 0.-129
Gev for f,)-

It can be argued which oﬁuple of values is more meaningful. In what follows, our
choice is to fix the physical values for f, and let e and Fj to be chosen from a given
criterium. As we shall show, there is a natural criterium coming from the stability
of the mass of the soliton after quantization.

We can establish a formal link between the values of the control parameters ¢
and k. We chose ~ = as the starting poin’t. for F(F) at the origin and asymptotic
value for K(p). For a regular solution with baryon number ng at sufficiently small

values of ¥ and 5, knowing the numerical values of F(7) and K{p), we have:
Fe(f ~ 0) = —x + ¢5F + OF) (31)
< . 1 ~
Fg(f ~ c0)=Kg(p ~ 0)=(ng—1)x - E:cgpz + O(p®) . (32)
We can safely write, subtracting both expressions:
2 o i i )
KB = 32— —¢gF + npx + [Fp(i ~ 0) — Fp(7 ~ oo)]} . (33)

Knowing 7, p, Fg(f), ng and ¢g, xp is determined. The values so obtained for x5

confirm the results obtained numerically from the limit
Kp = }Ln;lo ’:2 [(‘ng —_ 1)1r - F(f")] (34)

to several places.
The values for g do not show the regularity with ng that seems to be valid for

¢p5. Probably this reflects the different structures of the analytical solutions (Egs.(8)

- (10) , Bqs.(18) - (22) and Eq.(23)).



CBPF-NF-041/91
~18=~
A final comment: unphysical solutions are those which are irregular at one enﬂ,
since they correspond to half integer baryon number and, worse, they have divergent
values for the mass and morﬁemt of inertia of the solution. There seems to be
however solutions which are regular around half integer values of 7 at both ends of 7
corresponding to the values ¢;, ¢;, - - - of ¢. They would have integer baryon number,
but would have divergent values for the classical mass and moment of inertia. They
seem to appear as a consistent requirement since for non-special values of ¢ there

seems to be always two solutions.

3 Sum Rules for the Solutions of the Differential

Equation

The use of shooting methods to solve the differential equation Eq.(3) and Eq.(13) is
a fast and reliable way to obtain the value for the parameter ¢ that labels a classical
baricnic solutions.

Procedures integrating by steps in the independent variable, as the ones we have
used, let you know when a significant ¢ value for integer baryon .number has been
attained only visually after solution jumps from a half integer value of 7 to the next.

Iwasﬁ_aki and Obkyama developed sum rules for the non-linear sigma model which
allowed to undestand the main features of the solutions in the asymptotic region.
The sum rules can be seen also as a consistency check for the solution.

Let us show the derivation of an analogous set of sum rules for the Skyrme

model. Let us multiply the differential equation Eq.(3) by r*N dF (r)/dr, where
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N is an integer, and then integrate all terms between a pair of values r; and r,
(r1 < r2). In several terms, integration by parts may be used, and we have, at the

end:

1 PN+e [dF(r)
2’

- _N/ dr PN43 [dF(r) FN+2 g2 [F(r)]l::
{ 4 rN*2gin? [F(r)] [fi%] T

r2 1? r2
—4(N+2) [l dr PN+ sin? [F(r)] [%} — 2rN sin* [F(ir')],'_l

+ (N +2)/ dr rN*+'5in

2f2

+2N jr" dr r¥-1in4 [F(r)]} =0. (35)

This complicated expression merits some comments:

i) When multiplied by ef, to the power N + 2, it goes immediatly into an
expression in terms of the dimensionless variable #;

ii)) Changing variable to p = 1/r provides an almost identical expression with
K(p) instead of F(r), which is precisely the kind of sum rule coming from Eq.(13);

iii) In the limit e—s o0, we recover the expressions used in the non-linear sigma
model by Iwasaki and Ohyama.

It is interesting to look at the limits when ry is let to zero and r, grows indefinitely.
This we shall not do in general, but only for the special cases with N = —2 and
N = —4, where some terms cancel from the start (in N = —2 ), and some integrals
are rapidly convergent at infinity (for N = —4). By the way, these are the cases
studied for the non-linear sigma model by Iwasaki and Ohyama.

We assume that the value at the origin of the chiral angle is —,

F(0)= —x (36)
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as required for the regularity of the Euler-Lagrange equation Eq.(3) [1, 7, 10]. We

require also that, at the origin, the first derivative is finite,

F(r) =3 const . (37)
Asymptotically, we also demand the solution to be finite:

F(r) =3 const ‘ (38)

which covers the case of regular and irregular solutions.

In order to make sense of the integrals involved, it is needed that at infinity
the first derivative of the solution is zero, which is consistent with the preceding
condition:

dF(r) oo '
— ==y, (39)

Notice that the last three conditions are fulfillled by the regular and irregular
solutions found in the previous section.

We have, then, the following results for N = —2 and N = —4:

sin? [F(r — o0)] = /om drr [dﬁf‘)] 2 - e:f,? -/:‘o dr w (40)

[%_-_1)]’+ 8 [dF(;;—»O)]‘

e?f3
Y e
N ;_21_% /ooo 4 S ,[-f(r)] {[di.(-r) ?  sin? ’[f(r)]} - )

The first equation informs about the asymptotic behaviour for the chiral angle,
and is the analog of the Eq.(14) of Iwasaki and Ohyama for the non-linear sigma

model, which it reproduces when ¢ —+ o0.
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We immediately see the possibiiity of a result which differs from the case of the
sigma model, where, unavoidably, the right hand side being positive definite the
only solution was F(r — o0) = —x /2 (that is, no finite energy soliton with integer
baryon number).

We study the sum rule by integrating carefully the numerical solution for the
differential equation as ¢ grows from zero (the sigma model limit). The integration
is performed by simple summing of rectangles with base the step of integration
and height the value obtained for the quantities in the numerical integration of the
differential equation.

The result is sketched in Fig. 2 for the left and right-hand sides as functions of ¢
For most values of ¢, the modulus of the sine is 1, except for a few particular values
near to integers, as mentioned above. In practice, in the integration, at the vicinity
of one of these values, a gentle dip appears. If care is taken in the integration,
reducing the steps of the calculation and sw;reeping the region of ¢ with detail, it
turns out that the dip goes almost to zero, at the same time that its border gets
neat and narrower. In the process, more figures for ¢ give better results, in the sense
that the cancellations are more complete. The numbers, however, are quite sensible.
If one changes the interval of integration in the right hand side to [0, 1] by means of

a change of variable:

- (42)

r=

I~u
the results do not match further than three decimal figures. The results for the
chiral angle are those described previously, and represented in Fig. 2.

For what regards the second sum rule, it is not as useful as the first one, but it is
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important as a check of consistency between the input on the left hand side and the
global behaviour of the solution in the right hand side. Its validity helps to support
the idea that there is a continuous variation of the solutions, regular and irregular,
with the parameters of the theory.

The numbers obtained for the unit baryon number (¢ = 1.003764... [14]) can be
compared to tildse obt;ained by G. S. Adkins [7], and Ananias and Ferreira [13].

As we mentioned before, the existence of this special value when combined with
the indefinite character of the parameters e’a.nd F} allows to demonstrate that the
classical mass for the Skyrme model is not stable as we show below. It is only at
the quantum level that both properties combine to provide a well defined condition
for a state of definite minimun energy.

For B = 2 there are candidates proposed by Jackson, Jackson and Pasquier [§]
and Balachandran et al. [9]. The last authors find a B = 2 state only by appealing
to an SU(3) imbedding of the chiral soliton, and the former, propose that a B =2
state in the SU(2) framework, sp;herica,lly symumetric, is either unstable (with mass
three times that of the B = 1 state) or it is not a minimum but a maximum of the
action. In our case, we have explored the stability equation for B = 2 and found
that we are dealing with a stable solution. The stability condition is analyzed in the
next section.

Higher B numbers do not seem to be of strong physical interest, but they are
just a feature of the solutions of the differential equation for the Skyrme model, and

may be of some use for the description of nuclei.
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4 Classical Functional Stability, Derrick’s Argu-

ment and the Instability of the Soliton

The Euler-Lagrange equation for the Skyrme model in the hedgehog configuration,
Eq.(3), is not clearly a functionally stable solution. By this we mean that the
expression for the functional second derivative of the lagrangean is not explicitly
positive definite.

To show this, we write for a general chiral angle a Taylor expansion around the

solution of the Euler-Lagrange equation:
. _
F(ry=FR+eu(r)+ §€2u:(1‘) (43)

Here, ¢ is an infinitesimal parameter, Fy(r) is a solution for Eq(3), and u;(r) and
ty(r) are suitable smooth localized functions, vanishing at the limits of integration

for the lagrangean. Inserting F(r} in Eq(1), we have for the action functional:
L{F}= / L&z =Ly{F)} +¢ L {R) + %.szr,2 {Fo} . (44)
The extremum condition
L {Fo} =0 (45)

produces the Euler-Lagrange equation we are discussing (Eqs.(3) and (13)). The

quadratic term coming from Eq(43) into Eq(44) is

Ly {Fo, w1, g} = l'ﬂ’%fo df {[ =% + 2sin’ [Fo(r da)]] [dul(r)

+ [2 cos [2FofF, ¢)]+ sin? [2Fy(F, ¢ )]+§—zsin2 [Fo(7, &)]cos [2Fu(F, )]

— 2sin 2R, ¢)1f‘5’f-°-‘-f—'~‘i’- cos [2Fo(7, 4)] (M)] ?(F)}- (46)
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The second term in square brackets is not positive definite. The reader ma.y ask
about the function uy(r). It happens that its contribution to L, is exactly of the
type that renders L; equal fo zero in Eq(45).

Notice that in the limit ¢ = oo we have an undetermined result, since Fp "—°
x /2. Notice also that for ¢ # ¢, the integrals always diverge, making L, meaning-
less, because of the term in {du/dF)2. |

We have analyzed for B=1, 2, 3 the behaviour of L, fdr functions u; which
were non negligible and finite in a finite p(;rtion of the real axis. The first term in
Eq(44), proportional to the square of the derivative of u;, overwhelms always the
second. For the asymptotic region, the first term (#?) is by large the most important.
Asymptotically, the second bracket receives contribution mainly from the first term
cos [2F5(7, #)]. Nowhere the integrand is negative, even when the second bracket is
at values of Fo(F) ~ =/2.

Another aspect of the stability problem for solitons was raised almost immedi-
ately to ti1e work by Skyrme. It". was challenged by Derrick [2] in a simple argument
which we reproduce.

Consider a system with coordinates @ in (spatial) dimension N, such that its
energy reads:

E) = [ (V) + £(6)] &= (47)

where 8,(x) = 8(Az). Notice that 8 is a solution for the dynamical problem of the

system. If one performs a scale change in the independent variable

t

' =z - (48)
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we have, for E;:
E\ = / [ (vo)? + £(8)] ANaMz
= AN j (VO)2dNz' 4+ A~V / F(6)d '

= /\Q—N I["'I\_-N Iz

- (49)

(50)

In the neighbourhood of the solution (A = 1), the conditions for stability of the

solution § are:

dE, '
| =C-Mh-Nh=

d*E,
d\?

A=1

In our case, we have for the classical mass that N=1,

My=FE= %‘K f,-z /:° dr r? { I:dﬂf_r) + = . sm’ [F(f)]

Lt
e1f3

After performing the change for the independent variable

=i { + A Iz} .
At the minimum:
-
=m(p) >

For the Skyrme soliton A =1 and from Eq.{55) we have

I2=I1.

=2-N{1-NYL+NN+1)1;>0.

o] )

(51)

(52)

(83)

(54)

(55)

(56)

. (57)
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For a stable soliton, the contribution of t.he.Skyrme term to the classical mass is
equal to that of the no.n-linea.r sigma model. At the same time, Eq(56) is satisfied
only for I, > 0.

We have verified numerically that the condition Eq(57) is only satisfied by the
solutions of the Skyrme model with integer baryon number.

Moreover, notice that for the pure non-linear sigma model the question of sta-
bility is crucial. Without the Skyrme term, there is no soliton solution amenable to
treatment as a nucleon state, |

Our results seems to indicate that the argument by Derrick is more powerful
than originally proposed. It is usually taken as an extra condition on an already
existing solution; from our work it looks that it indicates when a solution exists,
and, besides, it i1s stable.

We are now ready to establish an important result for the baryonic solitons of
the model at the classical level. Namely, we have asserted that the solutions for
these cases are stable from the f)oint of view of the action functional, and also from
the application of Derrick’s argument. Both studies were performed numerically, no
special property was used of the solutions.

We now take into account that the regular solutions depend in an indetermined
way on the parameter F}, or, equivalently, on the value of the Skyrme parameter.
Let I;S write the contributions to the classical mass coming from the non-linear sigma

model term and from the Skyrme term using the dimensionless variable ¥. They
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result:

M(sigma model) = L f'/ dr H,{[dF(r, ‘f-’)] = sin® [F(F, ¢)]}(58)

1 fr
= Ew?al(é) (59)
0 7 2
M(Skyrme term) = %x%/o dr {4sin2 (F(F, ¢)] [2 (dF(d,': ¢))
+ = 251!12 [F(F, ¢)]] } (60)
= l“"!:‘az(‘f’) (61)

The pure numbers coming from the integrals, a;(¢$) and a;(¢), are equal for a

baryoric soliton solution, from Derrick’s argument, Eq{57). So, at the end, we have
M = M(classical) = x%al(cﬁ) . (62)

As long as we keep ¢ fixed at a special integer baryon number value, we can vary
e at will and have any value for M. This is pt:ecisely the kind of argument used long
time ago to demonstrate the instability of an eventual soliton from the non-linear
sigma model (which has none). By the way, at the limit e — oo the non-linear sigma
model cannot have a soliton and M — 0.

This result translates the corresponding indeterminacy of the dimensional pa-
rameter Fy at the classical level, and we enunciate it clearly again: in the SU(2)
Skyrme model with the hedgehog representation for the chiral angle, the value for the

classical mass of a soliton with integer baryon number is completely undetermined.



CBPF-NF-041/91
28~

5 Quantization of the Skyrme Model: The Sta-

ble Baryon

The problem of the correct introduction of quantization for solitons deserves con-
siderable attention [15, 16]. In the realm of the study of baryons as solitons, the
current procedure is rather heuristic and limited in scope. It only prc;tends to pro-
vide an approximate description for the lower energy configurationa, and it would
be necessary, and even urgent, to devise a more formal justification for it [17).

The starting point is to recognize that all configurations obtained from the hedge-
hog through an isospin rotation are of the same finite energy. It can be expected
that, for the lower energy states, flavour rotation generate modes that approximaté
them. The rotations are introduced as collective, time dependent coordinates, and
are quantized applying standard procedures. In more concret terms, given a hedge-
hog type solution to the Euler-Lagrange equat}on Eq.(3) for the Skyrme model, with
a ¢ parameter corresponding to Ia. well defined baryon number, we approximate a

time dependent solution by:

Ulr, t) = A@QU(r)at@)

cos [F(r)] + i1 Diy(t) nysin [F(r)] (63)

with A(t) € SU(2) and Dy a rotation matrix in the fundamental representation.
The lagrangean Eq.(1) with this field U(r, t) instead of the original static one,
reads:

L{U(r, 8)} = ~Mo + 0 Tr[8oA 8oAT] (64)
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where &y indicates time partial derivative,

) ;r 1 ey { s ({dF(F o , sin? [I;SF, é)l)} (65)

e fr Jo df
and M, is the classical mass, Eq.(53). The quantization of this lagrangean is well
known and is given in several articles ([5] - [7]). Let us recall two main results. First.
the states of the quantum hamiltonian for the SU(2) hedgehog should be labelled by .
the same eigenvalue of the angular momentum, J?, and of isospin, I’. The second
is that the hamiltonian turns to be the one of a rigid rotator, with energies given
by:
Jz

Notice that both M and & are functionals of the chiral angle F(F, ¢) from the
classical description. For quantization of the solitons as a fermion the eigenvalue of
the angular momentum should be half-integer.

The main point here is that, as shown from the explicit expressions for M and

8, the dependence of E above on e (or Fy) allows for a minimum. To wit:

M= M+M

=-P—MW+MWH (67)

and 4 is given above. Writing

2 1
6= 37 FFH9) (68)

the expression for the energy now reads:

= Lol (a8 + a(@) + 2 T o) - (69)
2 ¢ 2 I%wb(gﬁ)l _
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We recall that for a baryon solution ¢ is fixed. For the nucleon and the A states,
the eigenvalues of the J? are j=1/2 and 3/2 respectively.

It is now simple to find the minimum as a function of Fy:

iR = 0 (70)

and we get, taking into account that a;(¢) = a;(¢) at the special ¢ value,

. 4 x2 7
€ =§mal(¢)b(¢) ( )

or, equivalenttly, from the definition of ¢:

4 x2

R R NOLOTE (12)

Eq.(71) above for e, the Skyrme parameter, may be considered as a self consis-
tency condition for the model. It is an expression written in terms of quantities all
internal to the description by the hedgehog. That the classical description and its
quantum transcription are equally taken into account is witnessed by Eq.(71), where
a1(¢) comes from the purely classical treatment of the model, while 5 ¢), which is
defined classically, intervenes only at the quantum level, after quantization of the
rotation degrees of freedon introduced by quantization.

Since we are working with expressions for definite baryon number, the parameter
¢ links the Skyrme parameter with the “size” parameter F;. This is the content on
Eq.(72)

When substituting Eq.(71) in Eq.(66), the final result for the energy at the

quantum {stable) minimum is:

1/2 a3 1/4 .
E=(3%) GG+0P" ;‘(%1] fe. )
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Notice that appart from the value of § the dependence of this result is all on the
parameter ¢. The quantity f, sets the scale for the minimum quantum energy.

The appearance of the minimum for the quantum energy is the most prominent
feature of the formalism of quantization. The only ingredient added to the usual
procedure is that the value of the parameter ¢ corresponding to baryonic solutions
with B=1, 2, 3, - -- is taken into account.

We interpret the state at minimum energy as indicating the stable configuration
in the quantum domain at this level of th;a dynamics. It might be, after all, an
artifact ensuing from the rather primitive quantization procedure generally adopted,
but in any case it is consistent and calls for the development of more accurate
formalism for quantization, as stressed at the beginning of this section.

These important characteristics of the theory have not been properly accounted
for by other work on the subject {[5] - [7]). Three quantities are introduced in the
model: f,, e and F;. Together, they form tlie dimensionless parameter ¢. Former
work placed not at the quantum minimum, and two quantities had to be fixed (¢
is selected from the need of having integer baryon number). Ignoring the relevance
of F, the values of ¢ and f, had to be chosen by fitting, using as input the spins
and masses of known baryonic states, in particular the masses of the nucleon and
A(1232) isobar.

In ;Jur view, f. should be taken to be properly defined at the level of the complete
theory of hadron interactions at lower energies. This should include also massless
pion-pion scattering, and at each level of addition of new dynamical ingredients, the

value of f, should compatibilize all numerical results. The other two meaningful
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quantities, ¢ and Fj, are proper to the model.

It is now a matter of giving numerical values to the relevant quantities for the
nucleon state, the A(1232) and even to play with baryon numbers bigger than one,
to look for the results.

Without further work, however, we can get a value for the ratio of the masses of

the A(1232) and the nucleon:

=4 = 3
BG=7=5) _gueo14053... . ()
E(z=1=-2-

For comparison, the experimental number is:

M(A(1232))
M(N(938))

= 1.313 (75)
The agreement is better than 20 %, and is an exact prediction from the Skyrme
model.

Another interesting ratio, at this level, is the one between the contribution of
rotation and the static classical results:

g-.+1 'es
4 =b(o

*Ly(9) (76)

—

1
3

This may be coming from the restrictions seen from Derrick’s argument. The
amazing thing is that this result does not depend on J? neither on the baryon
number.

The ratio Fi(i = j = 3/2)/Fi(i =7 =1/2) = 54 also.

In Table 1 we list the results for B=1, 2, 3 giving two values to f,: 0.129 Gev, as

in [5, 7], and 0.186 Gev, as coming from experiment. We take the eigenvalues 1/2
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and 3/2 for B=1, 1 for B=2, 1/2 and 3/2 for B==3. Fig. 3 depicts the main fea,tﬁres
of the results.

The results of Table 1 deserve some comments. In the first place, notice that the
baryon states with B=2 and 3 are almost degenerate, quite in disagreement with
the observed states. This should not bother much, since probably a description of
the observed states demand to consider them as composites.

Second, the higher the baryon number the narrower the state in space again
contrary to the observation. It would be intleresting, however , to look for remnants
of this structure in the observed form factors of deuteron, tritium and He>.

As a last comment, it seems that the ratio of F; for the B=2 state and the B=1,
I=J=1/2 state is approximately equal to the rate of the Fj value for B=3, I=J=1/2
to the B=2 value. This is perhaps an intrinsic property of the model at the minimum

for the quantum energy.

6 Nucleon Properties for the Quantum Stable

Soliton

In the Table 2 we present the numerical results for nucleon properties obtained for
the quantun stable nucleon, as compared to the current values obtained by Adkins,
Nappi and Witten.

The definitions are the same as used by those authors, and the two list of values
corresponds to the two options chosen for f,, i.e., 0.129 Gev as in Adkins, Nappi

and Witten and 0.186 Gev, which is the current experimental value. In any case,
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we just propose these values as illustration since we think that the right value at
any stage of an approximation scheme should provene from a global consistency of
all results obtained from the theory.

Let us make a few comments on some of the values quoted.

The axial weak coupling is known to come from the 1/r? asymptotic contribu-
tion of the hedgehog’s chiral angle {5). Its value is, then, a direct measure of the
dimensional parameter K, appearing in Eq.(14). The product of K, and F? is a
pure number and turns out to be 17.45 for f,=0.129 Gev and B=1. It is 199.66 for
B=2, and 867 for B=3.

The isoscalar radii are smaller than the measured ones, but its ratio is the same
as in the calculation by Adkins, Nappi and Witten.

It is interesting to exploit the fact that the parameters of the Skyrme soliton
at the quantum minimum of energy are well determined to extract information on
other physical quantities. Consider the isoscalar and isovector magnetic moments.

Following Adkins, Nappi and Witten

LI S S
(luf=0) - 41‘_8 < Tr=0 > b(¢) (77)
2 1
(hr=t)y = 57=5K(4) (78)
€
From inspection:
1 <ri >
gy = ———21 79

Using the relationship between magnetic moment and gyromagnetic ratio, we get

8 : 1
gi=1 = §M2 < T > Pl (80)
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This relation is well satisfied (within 10%) by the experimental numbers. We obtain
gr=1 =104 (expefimentally, 9.4).
Up to now, we have not used any information from the minimum of quantum

energy. We do so by recalling that rotation contributes one fourth for the rest mass

at the minimum;

1 3 J? F3e’f,
M) = 27(1;-)—- . (81)

Substituting in the expression for the gyromagnetic ratio:

8
gi=1 = 4M (p;), = g-ﬁ (82)
1., 1
gi=0 = EM' < Timg > 72 (83)

These expressions are predictions of the model at the minimum quantum energy.

Numerically, for the nucleon,

gr=1 = 2 . (84)

gr=0 =135 (85)

and we recover the values calculated from integration.
Our last comment in this section is about the value for the axial weak coupling
constant. In terms of the coefficient K, in the expansion of the chiral angle at

infinity Eq.(14), we have:

Ll 2

1
=T — 202y 1
gaA = 31(2f1r - (ng fr) 62 (86)

T
3
The solutions are controlled by the dimensionless parameter I,e? f2, which is fixed

for a B=1 soliton. So, as the Sky;'me parameter changes, g4 goes as e~ ?. The chiral
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a.ngle is more ooncentrated. about the origin for the "minimal” baryon of the Skyrme
model as compared with the case evaluated by Adkins, Nappi and Wittten.

To summarize, it seems that in order to get a better agreement to the experimen-
tal values, a repulsive interaction would be necessary to make the nucleon broader.
In particular bad shape is the isovector gyromagnetic ratio, which is almost five
times smaller t.hém the experimental value. We have reaéons to believe that the in-
clusion of the pions provide the would be welcomed repulsive contribution, contrary
to previous evidence.

Notice that f, plays somehow a control réle for all quantities. Masses grow with
fx, as well as the “shape” parameter Fy, making the chiral angle to grow faster,
or, in other terms, to shrink. This translates, in turn, into smaller charge and
maggnetic radii, while the axial weak coupling constant remaing constant. These are
all consequences in the “wrong” direction. A smaller value for fr then seems to fit
better with the description of the nucleon, as'long as the mass is not too low. As
we want to emphasize again, the fact that one is at the quantum minimum allows
to estimate better what are the necessary changes to improve the model, since the
relevant quantities appear with well defined behavour under changes in the model
parameters. This is a consequence of the scale properties of the regular solutions

for the, chiral angle.
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7 Discussions and Conclusions

In this work we have analized numerically and analytically the solutions fof the
differential equations of the Skyrme model in the hedgehog parametrization for the
unitary chiral SU(2) field. The aim of this research is to study the way a chiral
soliton can be used to describe as a first approximation the nucleon states. We have
also found a systematic for B > 1 states.

We have shown, by inspection of the solutions, through the study of sum rules
derived from the differential equations, and, finally, from the application of Derrick’s
argument, that there is a dimensionless “control” parameter ¢. It is made up of the
quotient between the first derivative of the regular solution at the origin and the
product of the dimensionless Skyrme parameter e and the pion decay constant. The
parameter ¢ itself is the slope at the origin for the chiral angle in terms of the
dimensionless variable 7.

In terms of this parameter ¢-it is seen that there are solitons with finite energy
and integer baryon number only for a countable set of values. For the rest of the
domain; solutions which are at one extreme of the real hali-line behave irregularly
at the other.

The regular solutions carry a dependence on a dimensional parameter which is
essentially the value of the first non-null derivative at the origin or at infinity of
the chiral angle. For the baryonic solution which are regular at both ends of the
real half line, we have selected the value at the origin of the first derivative as an

interesting parameter.
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The sum rules derived.in Section III proved to be quite sensible to the asymptotic
behaviour of the chiral angle. They provide also a consistency check for the value
of the first derivative of the chiral angle in real space.

Throughout these calculations the differential equation is integrated numerically.
There is a delicate fine-tuning involved in the obtention of consistent information
about the values of the control parameter ¢ where baryonic states manifest. The
agreement between different determinations is found at the level of one part in a
thousand.

We have made an application of the Derrick’s argument (or theorem) to the
present case. [t proves powerful, and the interesting point is that it not only seems
to show when the eventual solution is stable, it seems to give precisely an indication.
about when the non-linear differential equation does really have a soliton solution.

As stated before, different results are quite consistent, and this is to be expected
since to obtain them we apply the same nun:lerica.lly integration techniques, but
there is a satisfactory agreement when different numerical procedures are used.

Moreover, the results previously obtained (and widely accepted) by Adkins,
Nappi and Witten are reproduced.

The main point of these results is that the classical mass for the Skyrme model
exhibits the same kind of the instability as the one present in the pure non-linear
sigma model. As shown in Section IV, one can keep fixed the value of the control
parameter ¢ changing F; and e appropriately, but the mass will vary at will with
the variation of the Skyrme parameter which is a parameter that cannot be fixed at

the classical level.
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We have applied the same, rudimentary, quantization procedure through collec-
tive coordinates which is costumarily used by many authors. The results, as is well
known, are that the soliton behaves as a rotating top at the quantum level.

The interesting point, and this is an exact consequence of the scale invariance of
the soliton solution, is that the parameter e factors out neatly in the classical mass
and the moment of the inertia of the solution. Then, the quantum energy depends
on € in such a way that it has a minimum. This can be taken as a self consistency
condition for the model.

The minimum singles out a quantum stable soliton solution, for each value of
the baryon number and angular momentum. The stability is an important feature,
since it prevents the state to dwindle away, as it was possible in the classical case.

This state is, in our opinion, the one that should be taken as representative of
the approximation by the Skyrme lagrangean of the nucleon state.

Previous results for the nucleon pa.rameters- were not obtained for this case. We
have recalculated the interesting ciuantities, and verified that as the parameter f,
is taken to vary, the numerical results scale in the way the scale invariance of the
classical soliton solution predicts. This is quite satisfactory to have confidence on
the theoretical framework.

In our opinion, in order to establish a consistent approximation scheme in the
chiral theory for strong interactions, several steps suggest by themseives. The optics
is that the complete, exact theory, should provide the physically observed values,
whereas at intermediate levels of the approximation only a significant overall con-

sistency should be demanded.
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To begin with, Derrick’s argument enforces the point that far from being a kind
of correction term, the Skyrme term for the baryonic states is as important as the
non-linear sigma model term put forward originally to describe low energy pion
physics. Accordingly, this feature should be incorporated into the picture provided
by current algebra, a task accomplished rather long ago by Pak and Tze [3].

Beyond this level, it is necessary to take into account t.he mass of the pion,
and the fluctuations of the pion field aroundl the nucleon state. This amounts to
an improved treatment of quantization, such as has been elaborated recently by
Hayashi, Saito and Uehara [18].

At each step, however, care should be taken to revise the modification for the
classical soliton non-linear differential equation coming from new contributions, and
check the resulting picture for the nucleon state.

A significant point in the results presented here is that the structure of the
theory is well understood, and eventual variation of the significant parameters is
under control.

What seems to be needed to improve the nucleon description contained at the
present level is to make the chiral angle of the theory larger in space. This would
mean to decrease Fy, which in turn would contribute to reduce the contribution of
rot.ation_ and allow for an increase of the value of f, which is welcomed, to approach
the physical value of the nucleon mass. Non central repulsive contributions are
probably welcomed to get this improvement, and we are looking at present for them.

We believe to have shown that a better understanding of the features to the

differential equation central to the Skyrme mode! helps to device ways to improve

NP &
PR

e
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the physics of it.

In conclusion, we think we have a complete study of the SU(2) Skyrme model
in the hedgehog configuration and the sector of lower baryon numbers. Part of the
study is based on numerical integration of the nonlinear differential equation for the
chiral angle, but the conclusions are safe since different numerical procedures agree,
and the known results are reproduced. The physical content of the model has been

put to light, as a result, and the ways to improve it seem clearly understood.
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Figure Captions

FIG. la. - Plot of the regular solution at origin for the three values of the parameter
#: 0.90, 1.003764... and 1.10 .
FIG. 1b. - Plot of the regular solution at infinity for three values of the parameter
x: -15.0, -17.2771... and -45.0 .
FIG. 2 - The behaviour of the sum rule for t;he asymptotic chiral angle, Eq.(40), as
a function of ¢ .
FIG 3 - Spin and masses for the lower baryon number minimal quantum energy

states with f, = 0.129 Gev.
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¢ a(@) | () |i=3| e | [fr(Gev)| Fi(Gev/c) | M(Gev/c)
1.00376... 11.6 |51.01] 1/2 | 7.67 | 0120 | 0.993 0.817
0.186 | 1421 1.178

3/2 | 513 | 0129 | 0.664 1.222

0.186 | 0.950 1.762

1.9650 32.22]2105] 1 |1116| 0120 2.83 1.560
0.186 4.08 2.250

2.8882... 58.1 |563.9| 1/2 |20.02| 0.129 | 7.800 1.500
0.186 11.2 2.164

13/2 |1400| 0129 5.21 2.24

| 0.186 7.52 3.24

Table 1:

Results for B=1, 2 and 3
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et
Quantitiy ANW | ThisWork | This Work | Ezperiment
f*=0.129 Gev | f, = 0.129 Gev | fy = 0.186 Gev
My input 0.817 1.18 0.939 Gev
M, input 1222 1.76 1.232 Gev
e 5.45* 7.67 7.67 -
< >3 0.59 fm " 0.422 f,, 0.293 fm 0.72 fm
<r>ol 092 fa 0.65 fm 0.45 fm 0.81 fm
. 1.87 0.84 0.84 2.79
fin -1.31 -0.16 ~0.16 -1.91
e 1.43 5.25 5.25 1.46
gr=o 1.11 1.36 1.36 1.76
gi=1 6.38 2.0 ° 2.0 9.4
dga 0.61 0.307 0.307 1.23
GeNN 8.9 3.89 3.89 13.5
deND 13.2 5.83 5.83 20.3
HND 2.3 0.71 0.71 3.3
Fy(Gev/c) 0.7057 0.993 1421 -
K2(Gev=?/c?) -~34.95 ~17.65 —8.459 -

Table 2: Results for the Nucleon Physical Parameters

* Obtained by fitting
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