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ABSTRACT

The phase diagram and thermal and érossovér exponents of the
z(6) ferromagnet on. the square lattice are calculated within a
real-space renormalization group (RG) scheme. The obtained phase
diagram.(exhibiting.4 phases corresponding to Z(Gj, %(3), 2{(2) and
compietely broken symmetries) contains all exéctly known .critical
. points, and possibly 1is an excellent  approximation eve-
ry-where except in the high-tempexrature region where a
soft  phase | is expectéd to - appear. However, .all the
obtained results are exact in the.Wheatsfone-bridge hierarchical
lattice. 1In addition to these results, we presenﬁ an operational
procedure (the "break-collapse method") which considerably sim-
‘plifies the exact calculation of two-spin correlation functions

for arbitrary Z(6) two~rooted clusters (fregquent in RG approaches)..

Key-words: 2(6) ferromagnet; Criticality; Real space: Renormali.

zation group; Correlation function.
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1 INTRODUCTION

The Z(N) model contains as particular cases a considerable
nunber of important statistical models, e.g. bond percolagiOnL
‘spin 1/2 Ising model, Pottg model, discrete spin cubic model,
clock model, the symmetric Ashkin-Teller model [[1] and the
classical XY model. 1It.is identical to the N-state Potts and
the symmetric Ashkin-Teller models for N < 3 and N=4 respec-
tively. 1Its critical behaviour and phase diagram, with three
or more phases for N > 4, have attracted E}éll] the attenﬁiqn
of physicists for a long time, especially in the square lat-
tice where a simplification arises due to self-duality. In the
study of the criticality of the Z(N) model, different techni-
ques were used such as perturbation theory and Pade' extrapo-
lants [ 3], variational method and the infinitesimal Migdal re
normalization group (RG) transformations [ 6], finite-lattdce
approach [[7], mean field [[2], generalised duality transforma
tions [ 4,57], finite~size scaling and conformal invariance [1l],
break-collapse method and real space renormalization group EQ,
10,12,13].

The phase diagram of the Z (%) ferromagne£ in the square
lattice is known to have 5 phases ES,G]; namely: the paramag
netic [[P;2(6) symmetry], the intermediate 1[11’:;:he Z(6).sym-
metry has been partially broken into 3 sets, each of which has
'a-Z(Z) symmetryj: the intermediate 2]:12: the Z(6) symmetry
has been partiélly broken into 2 sets, each of which has a

z(3)'symmetryﬂ, the ferromagnetic [:E; completely broken sym-
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metry] and the soff.[:S; with power law decaying correlations]
ones. The P-I1, P-I2, Il-F, I2-F critical surféces join at = a
segment of a self-dual line completely determined by duality
arguments. This critical segment finiéhes on the P-F critical
surface at the 6-state Potts critical point PG’ The S-F and
S=P critical_surfé&:es_are expected ]:Sj to intersect the conti-
nuation 6f the self~dual segment at a point corresponding to

a temperature higher than the one of P All the above men-

6"
tioned critical surfaces are not exactly known, except for the
self;dual critical segment. Herein we calculate these surfaceé
through a real—sﬁace renormalization-group_(RG)fbased on the
two-rooted self-dual Wheatstbne—bridge graph (Fig. la). Simi-
larly to [:QJ,IWE also propose a break-collapse method for the
7(6) model which allows the RG recursive relations to be cal-
culated without doing any trace over spin configurations.

-The paper is organized as follows: in section 2 we define
the model and describe the RG formalism. In section 3, we pre
sent the break-collapse method. Sections 4 and 5 contain our
results and conclusions respéctively. Finally we present in the
Appendix a.method,[:lij for calculating the equivalent vector
transmissivitiesl:a:l of terminal graphs Gpr whose bonds are .. .all

precollapsed.

2 MODEL AND RG FORMALISM

The Z(6) ferromagnet can be described by the following di-
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mensionless Hamiltonian [ 5]:

= S 3 , %R , 1 .
s£-<i§j)h(ni—nj)=<i)3j>_Kl - BZI. 2K gcos [T(ni—nj )] (B 21/k,T) (1)
where to each site i we associate a random vériable n. - which
takes on the 6 integer values 0,1,...,5. 1In eq. (1) . the
sum is over all first-neighboring pairs of sites on a sguare
lattice. In order that the ground state be ferromagnetic, the
dimensionless couplings constantg K, 2 gJ. (1=1,2,3) must sat

isfy the following inequalities:

Kl + K2 20 . (2a)

K, +K, 20 (2b)
and

Kl +-3K2 + 4K3 >0 (2¢)

which were obtained by imposing that h(0)<.h(£) (£ = 1,2,3).
Let us introduce the operationally. convenient variable (vec

tor transmissivity [:8:[)1':' = (1,t,t,,t t;) through

3!t4l

tl =‘t5 =11 +e""(K1_+"3K2+4K3) _e-3-(KI+K2) _'.-e—ll (K1+K3) /DO (3&)
e, =t, [t _e—(xlf3K2+4K3) - o~ 3(Rp¥Kp) | ~4(K +K3) /D, (3b)
., El:l'_ g (K1 +3Kg+4K3) o =3 (R +K,) -.e“'(‘1+x3)]'/9a  (3¢)

where
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This vector transmissivity generalises the scalar one used  in
[15] for the Potts model.

The equivalent §ector transmissivity_g(s) (%tp?)curmxmamﬁng
-to a series (parallel)'array of two‘bbnds with respective vec-

tor transmissivities t'*’ and £¢?) is given by [8]:

tis) = til)tiz) - (r = 1;2,3) (series) (4)

D 4ol e D) 4 Dy (AN @), (DD

c(®) o C1 L 1 2 3 b (5a)
1 2) 426D () 4 (1D (@)
1+ 21:(1) ( + Zt( tyol kg (parallel)
L), (2) (), @) 4oy (z) (1), (2)., (1), (2)
t(P) ) .2 +t2 +t1 t.z. +1:. t 3 1:1 (5b)
1+2tm (z)*+2t(1) g?) +t(1)t(2) (parallel)
£ 4o (D2 (0% ) (1) @
+¢ '+2t + 2t
0 - ( : (2) g (2) (2) 2 ( ) 2y e
L1, C 1 2 1
L42e, 77877+ 28,776, 77 +e 0y (parallel)

Eguations (5) can be conveniently-rewritten as follows:

t:pJD _ t(l)D iZJD (r =1,2,3) (é)

where the dual vector transmissivity P [8] is given by
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-5=
1+t, =t -t
t‘l’ = t‘s’ = 12 3 (7a)
142t +2t, +t,
 l-=-t, -t +t:,
t) =t = ———2 3 (7b)
;+2t-1+2t2+t3
angd ' :
1-2t, +2t. -t
tr;* - e Wk T B (7¢)
1+2t) +2t, +t,

The relationships hetween tE and the coupling constants are

the following:

tD = x, = e 3(K *Ky) (8b)
and
t2"= Xy = e 4 (K1 +Ky) (8c) .

The above variables xr(r'=142,3) are precisely the nespecf'

tive variables z,X, and x, used by Domany and Riedel Elﬁ] in

B
the (3,2) model (which is equivalent to the Z(6) model). In
the description of the phéée diagram of the Z{(6) model we will
use the variables X rathgr than tr sihce the physical;anqmﬁer
space. is in the qube 0 < x. £ 1 in the ferromagnetic case.

In order to study the driticality of the Z(6) ferromagnet
we use a RG based on the self-dual twé—rootedlgraph (see Fig. la), .
which has proved to be very convenient for the square lattice

(e.g., bond percolation [[17], Potts model [15], Z(4)  model
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[9], etc). Following along the same lines of the %(4)  model
treatment of Mariz et al, [ 9], we obtained the following RG re-

cursive relations which preserve the correlation function:

N _
t! = T‘ (r =1,2,3) | {9a)
with
_ 2 2 2 3 2 z 2
Nl = 2{t +t +3t1 2 2 +21;11:2 +2t1t2t3+2t1t t +3t'.11:z 3
e3¢ 2.2 _
+ 2ttt + t (E2t5 ) £9b)
= 2 4 4 2 2 3
N, 2 tf +2t2+t +5¢ +21—.1 3 Hatlt, +4t2 tzt + 4t t2t3+
+ 2t. t t2 +6t2t2t +4t t . (9¢c)
3 1°2 3 ty
o2, .3 2.2 ,.2 3 2 3, 2.3
N, 2{1:3 +t3 +2t1t) +4§1t2t3 f"atltzta +21:1 +21:11:z + -
2.2
+ 2.t1t2t3} (9d)
and
- 3.,.3 3 &4 4 4 3.2 z 2 4
D=1 +«1t1 +4t2: +21:3 -_|-2t_1 +.2'.:2 +t-.3 +4t11:2 +4t1t2 3 +2t t2 +
5 2 2 2,2,
+ 2t2 +4t1t2t3+4t1 g 3 . (9e)

{€¢}}(r =1,2,3) are the components of the vector transmissivity
t' of the renormalized bond (Fig. 1b) whose coupling constants

K;'wene obtained through the trace over n, and n,, i.e. by imposing that
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_Ce'Bétlth}) - Tr e'ﬁdBLZSG(Kr) ' 41
3,4

where the constant C arises from the renormalization of the zero
of energies. We call t' the equivalent vector. transmissivity

Eeq(G} between the roots 1 and 2 of the graph G shown in Fig. la.

3 BREAK-COLLAPSE METHOD.

Before analysing the results coming from egs. (9), .let .us
describe a particularly simple way [break-collapse method (BCM)]
of deriving these recursive relations without the examination of
configurations, and, more generally speaking, the equivalent vec
tor transmissivity €°9(G) between the roots 1 and 2 of an anbi-
trary graph G associated with a 2(6) cluster.. t®d(@) is  de-
termined by.tzq({?<£)}) = Nf({E(z)}/D({E(z)})'(£.=1,2,3) where.
{g(z)} denotes the set of vector transmissivities, each of which
is associated with a bond of the graph. Nr({g(!’)}) and D(.{t(‘t)})
are multilinear polynomials of the form A+ Rt{u +C t,f,‘a) + Etgz)
for an arbifrary £ th bond where the coefficients A,B,C and E
depend .on the set of vector transmissivities (which we denote
{t(L)}') of the remaining bonds. These coefficients can be de-

termined by performing four different operﬁtions_on the £ th bong,

(&) _, (&) _ (&) _
1 —t2 -—t3 0),

=1), the "precollapse of type 2"

‘the "collapse”
(L) _
(t1

namely, the "break" (t

L) _, (&) _. (&)
(tl = t2 -—t3
L) _ L) _
3 2

0: tgt) = 1). It follows that:

t 0; t 1) and the "precollapse of type 3"'(t§£) £

2
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N UER D = e -l {B B e}y s e (Dntee (¢ By)

+ (t(L) t))Nbbc({t(L)} )-b(t(t) -t(z))thb({t{L)} "y fr =1,2,3)

(11a)

+ (e{8 —eB)pPe D0y 4 ({8 _ e (B))pbeb Loy, (11b)
where N:bb, . nn ,Dbcb are the respective numerators and denominahcrs
of the "brokeh graph" (bbb}, "collapsed graph” (ccb),"gﬁxnlhnmed
graph of type 3" (bbc) and "precollapsed graph of type 2" (bcb).
The BCM consists in applying recursivély the bteak-collapse equa-
tion (egs.(11)) together with the series and pardlleli algorithms
(egs. (4) and (5))until graphs exclusively made by precollapsal bonds
(which we will denote by Gpr') are .ultimately cbtained. The numerators
Nr(Gpr)(r'=1,2,3) and-the}kmnmhumny.ixspr)Qof the equivalent vec-
tor transmissivity of a termina; graph Gpr have no simpie -formalae
and their evaluation involves the counting of certain mod«6 flows
[14] on Gpr (see Appendix).

Let us illustrate the BCM on the graph of Fig. (la). Applying
egs. (11) to the 2 th bond between sites 3 and 4 we obtain the
broken graph, collapsed graph, precollapsed graph of type 2 and
precollapsed graph of type 3 shown in Figs. (2a), (2b), {(2¢) and
(2d) respectively. Their associated expressions for Nr(r =1,2,3)

and D are given by:
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-0
bbb _ . 2 . 242 2.2 .

N, 2(t) +£7E, +£5t7) (12a)
bbb _ 2 2,2 & | 4

N, -2{t2-+t1t3) + ot +-t2 (12b)
bbb _ 2 2,2

N, —2(t3-+2t1t2) (12¢)

pPPP =1 4 2¢ed w14y + 24 {124)

g | 2 3

N°°°=4(t +tot +t‘E)2 | (12e)
1 172 3’

NS = (2t +t2 +t2 +2¢.t.)2 (12£)
2 rek2 1 2 13 -
cCcC = 2

N, 4(t3-+2t1t2) (12qg}
beb _ 2 2,2 2 2 3 '

N, —2(t1w+3t1t2 tot +2t1t2t3-+2t 2t3) (121)
beb _ 3 2,2 & 2 2 _ _

N, 2t2-+2t +2t-.1 3-+t1 +5t2 +2t1t2t3-b4t1t2t3. (1233
beb 2 2 3 :

N, —2(t -+zt1 2 +2t t, +4tIt t,) (12Kk)
beb _ 4 2 2 4 - :

D 1+4t +2t +2t g HAETE LT 20, +2¢) (12£)
bbe _p a2 46242 4 242 4+ 2t

N, 2(t1 +t1t2 +t-.2 3 t1 wl:3 +2t t t3) {(12m)
bbe _ ., 2 4 . 4 2 2.2, '

N2 —2t2.+21: t +t +t +4t1t 1:3-0-21-.1 2 3 (I2n)
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bbe _ 2 .3,.,.2.2 2.2 :
NB' =2 (1;3 +t3_ +21:1t2 +2t1t2t3) (120}
bbe _ 3 R S 2.2 _ )
D =1 + 2t3 +21:1 +21:2 +_1:3 +4t1t2t3 (12p)

Expressions (l2a)-(12h) were obtained through exclusive use
of eqgs. (4) and:(S}, while the remaining ones required also egs.
(11). Substitutng’expfessions {12) into egs. (1ll) we Yecover
eqs. (9) without performing the traditional time consuming trace
operations. This type of producedure ' has proved to be.very useful
- in other problems, such as the Potts model ]:1'5., 187, resistor network

[19], directed percolation [20], Z(4) model [[9] . among others.

4 RESULTS

Let us now study the criticality provided by egs. (9). Since
eqs. (2} lead to complicate inequalitiesfin'the tr variables (in
contrast with the simple conditions 0 < x =< l), generating thus
a phase diagram which is more difficult to visualize than the
one expressed in the xr_variables, we will present our = results
in the x_ variables. Due to the self-duality of the two-rooted
graphs drawn in Figs. {(la) and (1b), the RG recursion relations.
in the latter variables have the same functional form as the ones inthe
tr variables {i.e., if we replace tr by X in eqs. (9) we obtain

x!' = Nr/D in terms of x

b4
r ’

17%7 angd xa). These recursion relations

lead toa phase'diagram (see Fig. 3) whose structure is similar

to the one  discussed by  Domany and Riedel [16]in their
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(3,2) model. Our RG flow exhibits fou; completely stable fixed
points} namely‘H(x1==l, ;2==l, X, =1} (characterising the P
phase}, L{0,0,0) (characterising.fhe F phase), L“(O;O,l)(charag-
terising the Il phase)_and L'(O,l,ﬁ} {(characterising .the I2
phase}). These four phases aﬁe separated by the two-dimensional
critical surfaces. Il-F, P-12, F-I2, Il-P and P~F which are the
domains of attraction of the respective singly unstable -fixed
points Il'IZ'Pl'Pz and §. The first four critical surfaces meet

-on the segment MP_ (see Fig. 3) of the self-dual itine which con

6
tains the 6-state Potts critical point PG and- the decoupled multd-

critical point D. The doubly unstable fixed point D (whose do-

main of attraction is_ﬁﬁﬁ)belonga £0 the decoupling surface x1=-

X,%, where the Z(6) model decouples into an Ising model
and a 3-state Potts one. ' The COmplétely unstable fixed point

P6 belongs to the line x, =x, =x_., {(and hence K, =K

1 2 3 1 2
the Z(6) model reduces to the é-state Potts model. Other par

= 2K3) where

ticular cases of the Z(6) model correSpohd ©  to. .the . limits:

2 =1, Xy =x3) (Ising models

and 121;'(11)'K

(1) Kz*w (x1_=x2 =0} and K, =K2=O'lx

with respective critical points I e (xl==x.=®

1 3 3
and K, =K, =0 (x,=1, x, =x,) (3-state Potts models with respec
tive critical points P, and.Pz); liiif K1 =2K3 (x1'=x2) (3~com-
ponent cubic model with critical point CJ); (iv) K2 '=K3=0_(6fstate

vector Potts model with critical peoint S§). The critical surface

P-F intersects the surface F-I2 alcng the curve PGCA_that lies

'in the cubic model plane. x this curve is the domain of

1 - *2f |
attraction of the doubly unstable fixed point C. The other curve

PﬁcDB, which is the intersection of the P-F and I1-F critical
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surfaces, lies in the dual plau-le(xl =x_3) of. X, =X, and all of. its
points flow to the doubly unstable fixed point P (the dual of

C). Cuts of the full phase diagram for fixed values of x are

1
represented in Fig. 4. The RG flow is illustrated in Fig. 5 for
the invariant space X, = X,. -We also present the-phase diagram
and some of its cuts in the variables A =k T/(3, +J,), B =:

(3, +J2)/(J1 +J3) and C = (J, -F-3J2 +4J3)/(J_1 +.:r'"$) (see Figs. 6
and 7 respectively). The Il phase. appears.only for C >4, For
any specific system, as we vary the temperature, the . system
will present one or two phase transitions'depending on the ratios
of the coupling constants. In the case of a single transition
(PfF), the g;;tical behaviour belongs to the 6-state vector -
Potts ﬁniversalify class, whereae in the other case the system
undergoes an Ising ﬁlus a 3-state Potts transitions. |

Similarly to the infinitesimal Migdal RG of .[ 6], the pre--

sent RG recovers the following exact results for the Z(6) ferro
magnet in the sguare lattice:

(1) the self-~dual line which contains the ppints D,P6 and 8

(ii) the location of the Ising (I, and'Iz) and 3-state .Potts

. (P, and Pz) critical points (see the Table)

1
All the abofe mehtioned particular cases (except the vector
Potts model): and the decoupling surface are preserved in the
sense that they are invariantlﬂ&sguﬁs under our RG: transforma-
tion.
The correlation length critical exponents v and the —cros-

sover exponenté ¢ can be obﬁained from the eigenvalues xt >1.

(£ = 1,2 or 3) of the Jacobian matrix a(xi,xi,xé)/a(xl,xz,xs)
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on the unstable fixed points through the formulae:

_fnb _
\J‘e &= E-{T— {where % > 1)
7 .
and
£n Ay
= EI;T - {£€,5=1,2 or 3; £ #3)
]
where b is the linear expansion factor (b =2 for Fig. 1l). The
approximate values of L) and ¢ are shown in the Table.

5 CONCLUSIONS

The present.RG based on a self-dual two-rooted graph yields
to a phase diagram for the Z(6) ferromagnet which agrees with
all exact results available for the square lattice, except ques-
tions related to the presence of a soft phaSé and to the first-
order naturelbf the 6-state Potts transition. These ' type  of
questions are not solved by most of the approximate real = space
renormalization group methods. Possibly the obtained critical
surfaces, with the exception of the para-feromagnetic one, are

excellent approximations whereas the thermal critical exponents

exhibit non-neglectable discrepancies with those  corresponding
to the square lattice. On the other hand aff the present results

are exact in the hierarchical lattice generated by the transfor-

mation shown in Pig. 1.
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similarly to the method proposed by Marizet al [9] for the
Z(4) model, we present a new technique for calculating the pair-
correlation function in an arbitrary Z(6) cluster. Our method
avoids the usual tracing procedure, and RG's calculations . based

in relatively large clusters become tractable through its use.

ACKNOWLEDGEMENTS

We acknowledge F.C. Alcaraz for useful discussions. Two of
us (ACNM and CT)} have benefitted from warm hospitality at the
Universidade Federal do. Rio Grande do Norte (Natal). We have

been partially supported by CNPqg Fellowhips.



CBPF~-NF=-041/89

~15-

APPENDIX

Equivalent vector transmissivities of terminal graphs Gpr.

The calculation of the numerator Na(Gpr)(u =1,2,3) and de-
nominator D(G ) of the a-component of the equivalent  vector
transmissivity-t;ﬁ(Gpr) of any terminal graph Gpr whose  bonds
are all precollapsed (of type 2 and/or 3) involves the counting
of certain mod—ﬁ.flows-on Gpr; A mod-N flow-$ on any graph G
is defined as follows (see, e.g., [ 23]). First, consider an

arbitrary directing of the ¢ edges e,,e e, Of G and © then

2 ' LI
associate to each edge e. a value ¢, which takes on the N values 0,
1,...,N-1, Define an incidence matrix S for each vertex j and

edge e by

+1 1f e is direéted into j
Sje = -1 if e is directed out of j

0 if j is not a vertex of e.

We say that $I— (¢1,¢2,...,¢ ) is a mod-N 4fow on G if for each

vertex j there is a conservation condxtlon, namely:

¢ mod N.

II

9¢. = s, ¢e

If the above condition holds only for unrooted vertices and
if in addition, there is an. external flow o entering at root 1

and leaving at root 2, i.e.
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-16-—
-a if § =1
9. = +o if j =2 °

0 otherwise

then $ is a mootﬁd mod-N o 4Lowen G. Notice tﬂat a mod-N flow
corresponds to tne particular case 6f a = 0.

Now we can go back to out ‘specific problém. It has been
shown [14] that N (G ) (a=1,2,3) is the number of rooted mod-6
o flows with the constraink that the flow on any .precollapsed
edge of type 2 must be 0,2 or 4 and the flow_dn any precollapsed
edge of type 3 must be 0 or 3. D{Gpr) cbrresponds-to the par-
ticular case of zero exterqal flow, i.e., D(Gpr) = No(GprJ. In
Fig. 8 is shown an examplg'éf:a graph pr constituted of 2 pre-
collapsed edges of tYpe and 3 precollapsed edées of type 3. In .

this example there is only one mod-6 a flow for a fixed external

flow oaf{a =0,1,2,3).
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CAPTION FOR FIGURES AND TABLE

Figa l -

Fig, 2 =~

Fig. 3 -

Fig. 4 -~

Two—rooted.graphsassociated.with the RG recursive rela.
tions'obtained by.renormalizing ¢luster (a) into clus
ter (b). The rooted and unrootéd vertices are repre-
sented by o and ® respectively.

(a) Broken graph} (b) collapsed graph, . (c} precollapsed
graph of type 2, and.({d) precollapséd graph of type 3
cbtained from that of Fig. l(a), considering, respecti

(8) _ (&) _ (L) _,, (&) _ (&) (&) 4, (&) _
vely, tyT =TT =T =0y t, ty 1; 77 =

(‘E’) =0: ﬁ§£) =1: t(t) =t(£) =0r tgz) =lr where the

'% Tl b4

£th bond links vertices 3 and 4.

2(6): ferromagnet phase diagram in the (xl,xz,x3) space.
F,P,Il and I2 denote the respective ferromagnetic para
magnetic, intermediate 1(Z(2) symmetry) and intermedi-
ate 2(2(3) symmetré phases whose sinks are L,H,L" and
L' respecﬁively. Stable fixed points are represented
by B, whereas singly, doubly and completely ' unstable
fixed points are denoted by o,-® and o respectively.

The critical points are: Il,I

Ising; P,,P - 3-state

2
Potts; & 6-state vector Potts, P

2

6 6=-state Potts; C .3~

component Cubic;.cn dual of C; D Ising and 3-state

Potts decoupled. The critical lines at x_, =1 and the

3
self-dual line are represented by --- and —--- respec-

tively. The arrows indicate the RG flow directions.
Phase -diagram cuts in the (xz,xBJ spéce for the follog'

ing fixed values of X, 4 {a) X, =X ~ 0.1516; (b):x1=

1|D.
X, 2, % 0.2898; (C) x1=x2|P23 0.3660; (d) x1=x1|s & 0.5860.
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Fig., 5 -

Fig. 6 -

Fig. 7 -

Fig. 8 =

TABLE -

RG flow in the invariant subspace x, = xz.correspuxﬁng
to the 3-component cubic model. The dashed line cor-.
responds to the 6-state Potts model. L,L" and H . are
the sinks of the respective ferromagnetic (F), inter-
mediate 1(Il) and paramagnetic (P) phases.

Z(6) ferromagnetic phasé=diagxaﬁ“in the (A,B,C) space,
where A = kBTX(J1J+J3), B EtJ1-+J2)/(J1-+J3) and C =
TJI-+3J2-+4J3J/(J1FFJ3}. The Il phase appears . .only
for C > 4. The arrvetP6Ddoesnotlieinthep1ar:eB=0.
Phase diagram cuts in the (A,B) space for the following
fixed values of C: (a) C=0, (b) C=4; (¢} C=C 5 A 8.5613.
Example of a terminal graph Gpr where D(Gpr) e Nl(Gpr)=
=N2(Gpr) =N3[Gpr) =1. The corresponding unrooted and
rooted mod-6 o (¢ = 1,2,3) flows on Gpr are shqwn in
(a), (b}, (c) and (d) respectively. The arrows.indicate
the arbitrarily chosen directions of the edges; the dashed and
dotted lines refer to precollapsed. edges of types 2 and
3 respectively. The value of the nonzero external flow

entering at root 1 and leaving at root 2 is also shown.

Fixed=§oint coardinates in the (xl,xz,x3) space, corre -
lation length critical exponents (v) and crossover ex-
ponents (¢) caloulated within our RS scheme. For camparison we
list in the last coluﬁn (ulit) the values of v, {Ising universali
ty class), vs(g—state Potts universalityuclaés), v, {3-camponent
cubic universality cdass) and vVXG-sfate vector Potts universali-

ty class) available in the literature-for the square lattice.
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*:Eh‘e ‘eigenvectors v associated to the eigenvalues l =2 Lvg

~@re in the follcm:l.ng directlons. 36 IH; %D ?6 ; 3ND . 11ne
) . L " v = .
x1=—.0v.5752=0.68:_{3, V2P1 5 7 v3 I1I2' v, line X, =X, 1.22}:3,

* o= Ciop. 2(R) ' = = .
v line x_ = Xor Xy 0; V.. .line X, =X, 1.07x2,
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FIG.1
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TABLE

Pixed Point-(gk,xz,xé) v : ﬁliﬁ |
Il(ororﬁ-l) 1515 | 1 I:ZI'J
I,(/2-1,1,vZ-1) ~1.15 1 Caa]
P (0, (¥3¥1)/2,0) 1,02 s/el21]
P, (/3-1)/2, (¥3-1) /2, | 1.02  ss5C21]
5(0.58601,0.12688,0.02370) v_ = 6.47 6.7L22]

vy = 3.68 i

Vyp = 3-68

6 = 4.28
D(/31) (3-1)/2, (3L /2, (/20 v, = 1.15 |  1-E21)

¥, = 1.02 576 21]

¢ = 1.13 - 6/5
r‘é-(_o-.;s_lazgl,o.3.1-329.,- 0.17343) v, = 0490 0.¢7=11l

VNC = 1.82

o = 2.02
c”(0.33785,0.21943,0.33785) | v_"’ = 0.90

D) _ 4 & -

Ve T 1.82

$ = 2,02
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