
hep - ph / 9506349

CBPF-NF-040/95

Gluon Structure Function for Deeply Inelastic
Scattering with Nucleus in QCD

Alvaro L. Ayala Fo and M.B. Gay Ducati

Instituto de Fisica, Univ. Federal do Rio Grande do Sul

Caixa Postal 15051, 91500 Porto Alegre, RS, BRASIL

and

/Eugene Levin †)

LAFEX, Centro Brasileiro de Pesquisas F́ısicas (CNPq)

Rua Dr. Xavier Sigaud 150, 22290 - 180 Rio de Janeiro, RJ, BRASIL

and

Theory Department, Petersburg Nuclear Physics Institute

188350, Gatchina, St. Petersburg, RUSSIA

Abstract

In this talk we present the first calculation of the gluon structure function for nucleus in

QCD. We discuss the Glauber formula for the gluon structure function and the violation

of this simple approach that we anticipate in QCD∗.

Key-words: Perturbative QCD; Evolution equation; Glauber formula; Gluon structure

function.

†) Email: levin@lafex.cbpf.br; levin@fnalv.fnal.gov; levin@ccsg.tau.ac.il

∗Talk given by E. Levin at QCD and nuclear target session at the Workshop on Deep Inelastic Scattering

and QCD, Paris, April 1995.



– 1 – CBPF-NF-040/95

1 Introduction.

The subject of the talk is the gluon structure function for DIS with nucleus. The gluon structure function

is the most important physical observable that governs the physics at high energy (low Bjorken x) in

the DIS. Dealing with nucleus we have to take into account the shadowing correction, which is the main

point of interest in this talk. We show that the shadowing correction in the region of small x can be

treated theoretically in QCD and can be reliably calculated using the information on the behaviour of

the gluon structure function for the nucleon. We organize the presentation in the following way: first,

we discuss the Glauber approach to the nucleus gluon structure function and answer the question what

information on nucleon structure function we need to provide a reliable calculation using the Glauber

formula; second, we briefly consider the corrections to Glauber approach that have been anticipated in

QCD. It should be stressed that this is the first presentation of our results and the lack of space does not

allow us to discuss the issue in details. This is why we are going to outline our strategy and to present the

first estimates rather than to give the complete study of the problem which will be published elsewhere.

2 Glauber approach in QCD .

The idea how to write the Glauber formula in QCD has been first formulated in ref. [1] and was carefully

developed by Mueller in ref. [2]. It is easier to explain the idea considering the penetration of quark-

antiquark pair through the target. Indeed, during the time of passage through the target the transverse

distance rt between quark and antiquark can vary by the amount ∆rt ∝ R kt

E , where E is the energy

of the pair and R is the size of the target (see Fig.1). The quark transverse momentum (kt) is kt ∝ 1
rt

due to uncertainty principle. Therefore

∆ rt R
kt

E
� rt (1)

holds if

r2t · s � 2mR (2)

In terms of Bjorken x the above condition looks as follows:

x � 1
2mR

(3)
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It means that the transverse distance between quark and antiquark is a good degree of freedom [1][2][3].

As has been shown by Mueller not only quark - antiquark pair can be considered in such way. The

propagation of a gluon through the target can be treated in a similar way as the interaction of gluon -

gluon pair with definite transverse separation rt with the target. The total cross section of the absorbtion

of gluon(G∗) with virtuality Q2 and Bjorken x can be written in the form:

σG∗ = (4)
∫ 1

0

dz

∫
d2rt

2π

∫
d2bt
2π

ΨG∗
⊥ (Q2, rt, x, z) 2 · {1 − exp[− σ(r2t ) S(b

2
t ) ] } · ΨG∗

⊥
∗
(Q2, rt, x, z)

where ΨG∗
⊥ is the wave function of the virtual gluon with transverse polarization. As was shown in ref.

σN(r2
t )

N

G*(Q2)
r
→

⊥

A A

Figure 1: The structure of the parton cascade in the Glauber formula.

[2] within leading log approximation of perturbative QCD (pQCD) we can safely replace this function by
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1
r2

t
after integration over z in eq.(3). Finally the Glauber formula for the gluon structure function reads

( for Nc = Nf = 3):

xG(Q2, x) =
4
π2

∫ 1

x

dx′

x′

∫
d2 bt
π

∫ ∞

4
Q2

d2 rt

π

1
r4t

2 {1 − e−
1
2 σGG(r2

t ,x′) S(b2t )} (5)

where

σGG =
3αs

4
π2 r2t xG(

4
r2t
, x) (6)

and S(b2t ) is the profile function in impact parameter space for the interaction of the gluon-gluon pair

with the target. We use for the calculation the Gaussian parameterization for S, namely:

S(b2t ) =
A

πR2
A

e
− b2

t
R2

A (7)

where A is the number of the nucleons in a nucleus and R2
A is the mean radius of a nucleus, which is

equal to

R2
A =

2
5
R2

WS

RWS is the size of the nucleus in the Wood - Saxon parameterization, which we chose RWS = r0A
1
3

with r0 = 1.3fm. Using the Gaussian parameterization for S we can take the integral over bt and get

the answer:

xG(Q2, x) =
2
π2

∫ 1

x

dx′

x′

∫ ∞

1
Q2

d2 r′t
π

R2
A

r′4t
{C + lnκG(x′, r′2t ) + E1(κG(x′, r′2t ) } (8)

where C is the Euler constant and E1 is the exponential integral (see ref.[4] 5.1.11) and

κG(x′, r′2t ) =
3αsAπ r′2t

2R2
A

x′GN (x′,
1
r′2t

) (9)

3 Theory status of the Glauber formula.

In this section we would like to recall the main assumptions that have been made to get the Glauber

formula:

1.Energy (x) should be so high (small) to satisfy eqs.(2) and (3) and αs ln(1/x) ≈ 1. The last

condition means that we are doing the calculation in leading log(1/x) approximation of perturbative

QCD (pQCD).
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2.The GLAP [5] evolution equation holds in the region of small x. It means that αs ln(1/r2t ) ≈ 1.

One of the lessons that we have learned at this workshop is the fact that the GLAP equation is able to

describe the HERA data quite well.

3.Only the fastest partons ( GG pair) interacts with the target and there are no correlations between

partons from different parton cascades (see Fig.1).

4.There are no correlations between different nucleons in a nucleus.

5.The average bt for GG pair - nucleon interaction is much smaller than RA.

We are going to discuss how well all the above assumptions work in the last section of the talk.

4 Results.

In our calculations we use the GRV parameterization [6] for the nucleon gluon structure function. This

parameterization describes the data quite well and it is suited for our purpose because (i) the initial

virtuality for the GLAP equation is small and we can discuss the contribution of the large distances

having some support in the experimental data; (ii) the parameterization uses the GLAP equation and

the most essential contribution comes from the region where αs lnQ2 ≈ 1 and αs ln(1/x) ≈ 1.

4.1 Where the shadowing corrections are big.

Fig.2 shows the kinematic region of the deeply inelastic scattering. The curves are the solution of the

equation κG = 1 for N (nucleon), Ca and Au. Above each of these curves the value of κG > 1 and the

shadowing correction (SC) are big, below κG < 1 and the SC are rather small.

4.2 What we are able to calculate in QCD.

¿From the master equation (5) one can see that the large distances contribute to the value of the gluon

structure function. Such contributions we are not able to calculate in pQCD and the value of the gluon

structure function crucially depends on the hypothesis about nonperturbative behaviour of the gluon
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Figure 2: Solution for κ = 1.
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structure function that we have to assume to treat the large distances contribution. In pQCD we can

safely calculate only the difference xGA(x,Q2) − xGA(x,Q2 = Q2
0) where Q

2
0 is the initial virtuality. In

Fig. 3 one can find the calculation for the ratio:

R1 =
xGA(x,Q2) − xGA(x,Q2 = Q2

0)
A (xGN (x,Q2) − xGN (x,Q2 = Q2

0))
(10)

as function of x for Ca and Au (Q2
0 = 0.25 GeV 2).
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Figure 3: R1 as a function of ln(1/xB) for Ca and Au.
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4.3 Contribution of the large distances.

As has been mentioned we are able to treat this problem only using some model for large distance

behaviour of xGN . Fig.4 shows the ratio:

R2 =
xGA(x,Q2)

A (xGN (x,Q2))
(11)

for two models:

1. xGN (x,Q2 < Q2
0) = Q2

Q2
0
xGN (x,Q2 = Q2

0). This model takes into account the correct limit of

the gluon structure function at small value of Q2, which follows from the gauge invariance of QCD.

2.xGN (x,Q2 < Q2
0) = xGN (x,Q2 = Q2

0). In this model we assume that the scale for the behaviour

xGN ∝ Q2 is much smaller than Q2
0. We look at the difference in the value of R2 as the estimates of

possible errors that originated from our poor knowledge of long distance behaviour of the gluon structure

function. The conclusion is that we cannot calculate the value of R2 even at x = 10−3 at Q2 = 1GeV 2

with better accuracy that 20%, while at larger value of Q2 (Q2 ∼ 10GeV 2) the accuracy is better ( about

5%).

5 Correction to the Glauber formula.

To abandon the main assumptions which have been made in the Glauber formula we have to develop a

technique to include (i) the interactions of all partons ( not only the fastest one) with a nucleus; (ii) the

parton interaction inside a nucleon and (iii) the nucleon correlation inside a nucleus. Such a technique

has been suggested in ref.[8] and it is based on new evolution equation that takes into account the parton

interaction inside the parton cascade as well as the parton interaction with the different nucleons. The

lack of space does not allow us to discuss this problem in details but we want to point out that the

Glauber formula shall be used as initial condition to the new evolution equation of ref.[8].

The numerical estimates [8] shows that the most essential contribution at least in HERA kinematic

region is generated by the interaction of all partons with the target which corresponds to so called “fan”

diagrams (see ref.[7]) while the dynamic correlation (see refs.[9] [10]) due to the interaction inside the

parton cascade remains to be rather small.
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Figure 4: R2 ratio for two models.
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However, reliable estimates can be done only after extracting from HERA data the value of the scale

for the SC for nucleon structure function. In our numerical estimates which will be published elsewhere we

follow the following strategy: we neglect the dynamic gluon correlations and iterate the master equation

(5) several times. Since there is strong ordering in rapidity of parton in each parton cascade the “i− th”

iteration means that we take into account the interaction with the target of all partons with the value

of rapidity (y) larger than yi. It turns out that we have to make only two iterations for x > 10−3 to get

convergent result.

6 Conclusions.

We know the Glauber formula and the technique how to find the corrections to the Glauber formula in

QCD. However we cannot provide reliable predictions for the gluon structure function for nucleus until

we will get more data on low Q2 and low x behaviour of the nucleon structure function. Unfortunately,

we have to know not only the behaviour of the nucleon structure function but also extract from the

experimental data the scale for the shadowing corrections to the value of the gluon structure function

in the nucleon. We are going to check how the information from DIS with nucleus can reduce these

uncertainties. At the moment we suggest to measure the ratio R1 which can be calculated with much

better accuracy than the value of the gluon structure function.
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