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ABSTRACT

The nucleation model is used to simulate nuclear fragmentation processes, The
“critical” value of the effective interaction radius is shown to vary linearly with the

expaasion factor a. The calculated mass and charge distributions are compared
with some experimental data. . '
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1. INTRODUCTION

Nuclear fragmentation is expected to yield important clues for the understand-
ing of the nuclear equation of state {1-2]. In fact, the cluster formation process is
a direct consequence of how the total available excitation energy is shared by all
the constituents of the nuclear system, and this mechanism should have strong cor-
relations with the fundamental nucleon-nucleon interaction. In particular, there is
a suggestion that nuclear fragmentation may be a manifestation of some critical
phenomenon in the hot nuclear matter[3].

Hence, much effort has been focused on nuclear fragmentation, in last years,
As & matier of fact, many inclusive data have been produced in nuclear emul-
sion experiments, in high-energy-proton-induced reactions and in nucleus-nucleus
collisions at intermediate energies, More recently, exclusive (47) data have been
- reported also[4-5]. On the other hand, several theoretical approaches have been pro-
posed. The most ambitious includes a full description of the process, from the very
beginning of the reaction untill the breakup of the interacting system into many
pieces. This time evolution of the whole process is very hard to treat and, in this
case, use is made mainly of transport theories, such as BUU or VUU equations[6),
or of molecular dynamics techniques[7). Other approaches resort to a radical ap-
proximation and focus only in the latest expanding stage of the process, ignoring
the details of the initial dynamics of the reaction. These non-dynamical treatments
of the nuclear fragmentation seem to succeed in reproducing the main features of
the inclusive experimental results. Of special interest, due to its particular simplic-
ity, there are the percolation models,%hich uses only two basic ingredients, namely,
lattice structure and (site- and/or bond-) probability concentration(8-10].

Recently, the nuclear fragment formation was investigated in terms of a stocha-
stic nucleation model {11] or aggregation model [12], which essentially are similar
to the percolation models, in the sense that they also are based completely on
the laws of probability. The main difference is that, in this case, each constituent
is assurned to be involved by an effective interaction sphere, whose radius R;p,,
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for simplicity, is taken as constant and the same for all elements of the system.
This latter assumption is equivalent to say that the nuclear interaction is charge
independent. From the geometric point of view, the effective interaction radius
is the analogous of the lattice size in percolation calculations and its use yields
several advantages in comparison with the lattice size, namely: a) the nucleons are
not constrained to ocupy fixed orientations as in a rigid lattice and the nucleon
interdistance may assume any value, provided be larger than the nuclear hard-core
radius R,; b} the effective interaction radius is immediately identified as an effective
range of the fundamental nucleon-nucleon interaction. In this sense, R;,; carries
the whole physics of the process, turning out the unique protagonist of the game.
This latter feature of R, allows us to say that, from the probabilistic point of view,
it is completely analogous to the probability parameter of percolation models.

In Refs.[11-12], Rin¢ is treated as a free parameter, with no relation to the
volume (or density) of the expanding system just before the breakup. Its value has
been assumed as around the nuclear force range or the rms proton radius. However,
in this paper, we show how to relate R;,, to the breakup volume. Especifically, since
percolation and nucleation models are based on the same concept of connectedness,
we assume the same prescription, suggested in Ref.[13] within the context of perco-
laticn calculations, for selecting the “critical” R;,¢ which hence can be associated
to n::clear fragmentation processes. This “critical” R;,; is shown to depend on the
breakup volume. Furthermore, as an example, we apply the model to calculate the
mass and the charge distributions of a system with Ap nucleons, comparing some
results with experimental data.

In the following, the nucleation model is presented in Sect.2 and the results
and discussion in Sect.3. Concluding remarks are addressed in Sect.4.

2. THE MODEL

The nucleation model, as mentioned in the Introduction, assumes each con-
stituent of the nuclear system be involved by an effective interaction sphere of
radius Ripn¢, so that one nucleon will interact with another only when the interdis-
tance is less or equal to 2R;,;. In this case, one nucleon simply sticks on another
and then the nucleons are said connected. Of course, this sharp cut—off approxi-
mation is equivalent in attributing an effective range for the combined short-range
nuclear and long-range Coulomb interactions.
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We simulate the fragment formation by using the Monte Carlo method. Firstly,
we choose randomly the positions ry of all nucleons of the nuclear compound system
inside a sphere of radius R, corresponding to the volume of the expanding system
right before the breakup into many pieces (We have taken care in avoiding a nucleon
to be placed with relation to another in a position with interdistance less than R, =
0.4fm). In order to account for nuclear surface effects, we have randomly selected
the magnitude of each r; according to a trapezoidal distribution for the nuclear
density. Secondly, a simple algorithm is used to identify clusters, which are defined
in a standard way as a subset of connected nucleons such that there is a continuous
path linking every nucleon of the cluster but there is no path connecting nucleons
located in different clusters. It should be mentioned, however, that this definition
does not prevent the appearance of quite exotic clusters, such as filamented or hole-
endowed or very ramified configurations. Or, still worse, completely pathological
stru-tures, with a disconnected topology like two interlaced rings. Obviously, all of
the: clusters can not be identif :d with nuclear fragments, at least with the nuclei
which are detected experimentally. Instead, they should be associated with excited
primordial fragments and, in this case, one has to allow them to evaporate or to
fragment.

As we are concerned with the role of R;,; in nuclear fragmentation and with
inclusive data only, we believe that the exotic contributions will be smeared out and
will not change qualitatively our results. Therefore, in this paper, we will pay no
attention to this relevant question, althought many recipes are available to remedy
this drawback, e.g., restructuration scheme [12], evaporation [13] and compactness
restraints [8].

In the following, let us consider the simulation of the breakup of a system
formed by A, nucleons, with Z, protons and N, = 4, — Z, neutrons. We assume
the initial system, due to the compression heating, to expand from the initial radius .
R, to the final value R, such that R = «R,, where « is the expansion factor. In
fact, a represents the parametrization of our ignorance about the collisional stage
of the process and, in this work, is regarded as a parameter. As it will be shown, it
is the unique parameter of the model, and can be taken, as estimated by different
models, to be approximately between 1.26 and 1.71, corresponding to a number
density between 1/2 and 1/5 of the normal nuclear density (ng = 1.53fm=3). It
should be noted that a plays the same role than the lattice size in percolation
calculations.

With relation to the cluster charges, model calculations so far have assumed
symmetrical fragments. This approximation may be fine, if one is restricted to cal-
culate mass distributions, However, if charge distributions are also to be computed,
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the isospin degrees of freedom should be introduced. In a very naive manner, we
assume the N,/P, ratio to be almost invariant under the clusterization process.
Especifically, for each cluster with A nucleons, we select randomly 2 protons, such
that the N/P ratio be approximately equal to N,/P,. For very light clusters, how-
ever, we impose N/P = 1 for A = 2 or 4, and equal 2 for A = 3. For isolated
nucleons, the charge is simply attributed by chance. We impose also a strict charge
conservation for the whole partition, i.e.,

M

Zi = Zp, (1)
where M is the multiplicity of the partition, It should be mentioned, however, that
in the nucleation model, like in percolative models, energy conservation is not taken
into account.

After each sampling, the clusters are stored and the procedure is repeated
untill the statistics is considered satisfactory.

Of course, the results are quite dependent upon the interaction radius Rine,
for a fixed value of the expansion factor a. In fact, one is easily convinced that for
small Rin¢, most of the constituents will appear isolated or aggregate themselves
in very small clusters, producing a large total multiplicity, while for large R;n¢ we
will have large clusters, with low total multiplicity. In this simple picture, the total
multiplicitysis expected to decrease monotonically with relation to Rin¢, from a
maximum equal to 4y (if hard-core effect is neglected) to 1, when all the nucleons
aggregates into a single cluster. However, this behavior is dramatically changed
if we take the small fragments out, plotting only the multiplicity of clusters with
A 2 4. As a matter of fact, this multiplicity, denoted by (M), now displays a bump,
decreasing to 0 for B¢ — 0 and going to 1 for Rin: — R. Then, we propose that the
value of R;,¢, which can simulate appropriately the nuclear fragmentation results,
at least in what inclusive data of mass and charge distributions are concerned, is
simply those which extremizes the curve {M) versus R;,, for fixed o, i.c.,

o) | _

Y @)

The Rin¢, found by this manner, is denoted by RS", and translates appraximately
the empirical fact that the intermediate fragments in nuclear fragmentation pro-
cesses are produced copiously. It should be mentioned that this procedure, applied
in the context of percolation calculations [13}, has given quite satisfactory results.

Finally, it . interesting to ncte that the nucleation model can be related to
the steady-state limit of a dynamical process, called coagulation, which involves an
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enseble of aggregates, where the thme evolution of the cluster concentrations is
described by a reversible (generalized) Smoluchowski rate equation [14].

3. RESULTS AND DISCUSSION

Let us first consider two expanded systems with (4q,Zo) = (87,37) and
(326, 138), which are suited for studying the p + Kr and the Xe + Ag reactions,
respectively. In Fig.1, we display (M) as function of R;,, for two arbitrary values
of o, It is seen that the qualitative behavior of (M), such as mentioned in Sect.2,
is confirmed at all and that (M) is not changed by a, which merely provoke a shift
of the whole curve. In particular, the peak occurs at about Rint = 1.2(14)fm
for a = 1.44(1.71) in the case of (87,37), and at about R;,, = 1.1 (1.3)fm for
a == 1.44(1.71) in the case of (326, 133). As said in the Introduction, the “critical”
Ry, in this nucleation picture, plays a similar role than the “critical” probability
Dc in the percolation description.

It should be pointed out two relevant features of R¢T,. First, R, seems to
be sensitive to the finite size effects. In fact, it shows significant dependence on
the size of the system, decreasing its value with increasing Ay for a fixed a. Of
course, it is expected that for Ag — oo, R{7, will stabilize in some point close to
the value corresponding to (326, 133). Second, R¢', is strongly dependent upon the
expansion factor a. In order to see this point better, we plot in Fig.2 R{., against

a, in the interval we are interested in. It is clearly seen that RS, changes linearly

with a, in both systems. In a very good approximation, Rir, can be fitted as
R§l, = 0.8« for Ay =87

= 0.7 + 0.1 for Ay =326, (3

In addition, R{}, is of order of the nuclear interaction range, as it should be. It
is interesting to note that the linear dependence of RS”, on a suggests that, in the
expanding nuclear system, the distance between any two nucleons is altered in the
same way as the radius of the system, i.e., the system performs a uniform expansion.

This hypothesis, first speculated by Hirsch et al.[15], seem to be supported by this
simple calculations.

The inclusive experimental fragment-mass data follow a power-law, i.e., Y(A4)
o A™7, where Y(A4) is the yield of clusters with A nucleons and T, the apparent
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exponent(3,15]. In Fig.3, we plot the apparent exponent 7 as function of Rin¢ for
the two above nuclear systems and two particular choice of a. It is seen that, just
in a manner opposite to (M), the curves now display a well, with minimum at
location which is larger than the corresponding R$7,. In Table 1 we display the
“critical” R{7, and the r and (M) calculated at Ry, = RS, for different values of
a.

Table I: “Critical” Values

\ (87, 37) (326, 133)

a T (M) T (M)
1.00 08 268 55 0.8 214 210
1.26 1.0 2.54 5.8 1.0 2.13 214
1.44 1.2 2.09 5.9 1.1 2.28 22.1
1.59 13 2.13 5.9 1.2 2.33 22.5
1.71 14 211 60 1.3 228 225
2.00 1.6 2.17 6.1 1.6 2.28 22.8

From Table 1, we also can see that {M) is almost independent of a and that
(M)(326)/326 = (M)(87)/87. This leads to {M)(Ay) = 0.07A4o, which is true at
least in the range 87 < Ay < 326. For the sake of comparison, in the case of
Ao = 197 and 233, for instance, the above relation yields (M) = 13.8 and 16.3,
while the actual calculation gives 13.6 and 15.9, respectively. Another interesting
point is that for smaller 4y, T is more sensitive to a, especially for small a.

Although no scheme has been introduced for treating the exotic fragments, we
believe that it is usefull to compare the results with experimental data, in order to
gain some insight in the qualitative behavior of the nucleation model. Along with
this reasoning line, we maintain, as much as possible, the probabilistic character
of the model, so that no physical ingredients, e.g. temperature, impact parameter
deformation etc., has been taken into account.

In the following, we assume o = 1.71. We depict in Fig.4 the mass yield,
altogether with the results from p+ Kr reactions of Hirsch et al[15]. It is seen that
the nucleation mode! overestimates the experimental data, although it obeys the
same qualitative behavior. On the other hand, the calculation yields r = 2,11 (cf

Table 1), while the experiments give 2.3[16] and the percolation in three dimensional
lattices, 2.2{17].

Next, the charge distributions are plotted and compared with the data from
Au reactions in nuclear emulsions of Waddington and Freier[18] (Fig.5) and with
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the results from Kr + Ag and Xe + Ag reactions of Phair et al.[5] (Figs.6 and 7,
respectively). Except for the Xe+ Ag reaction, our results show a quite surprisingly
good accordance with the data, if we have in mind that the whole computation was
based only on a single parameter, namely, the value of a. For the Xe+ Ag reaction,
however, the nucleation model underestimates the experimental data. It should
note that the percolation model also is unable to reproduce this large experimental
intermediate fragment yields[5]. In this case, probably, the inclusion of other degrees
of freedom will reduce the discrepancies,

Concerning to the statistics of this simulation, the number of runs for 4y =
87,197,233 and 326 were 2000, 1000, 1000 and 500, respectively.

Finally, it should be reminded that :he scenarios for emulsion experiments,
proton-induced and nucleus-nucleus collisions do not need be the same. In other
words, & may be different for different scenario. This means that in the nucleation
model still there is room for incorporating this and other physical aspects of the
process.

IV. CONCLUDING REMARKS

In this work, we have used a quite simple clusterization model for simulating
nuclear fragmentation processes, which includes somewhat the isospin degrees of
freedom. It has been shown that RS, varies linenrly with the expansion factor «
and this may be a indication that the system undergoes a uniforme expansion before
breaking into many portions. In our scheme, a is a free parameter — and the unique
one - related to the collisional stage of the reaction. The average multiplicity of
heavy fragments (A > 4) is shown to be proportional to the number of constituents
of the nuclear system (around 7%). The calculated mass and charge distributions
display the same qualitative behavior than the inclusive experimental data, while
the apparent exponent 7 reproduces the experimental value, within a reasonable
approximation.

We also have stressed the similarities between the nucleation model and the
percolation models. In particular, the “critical” RS, is much more amenable to
a physical interpretation than the percolation “critical” probability, in the sense
that the former is, in a some extent, related to an effective nucleon-nucleon cross '
section. As a matter of fact, the present computation has shown that it is of the
order of the nuclear interaction range. Especifically, RST, is between 0.8 and 1.6 fm
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forl<a<2

In summary, the nucleation model may be very usefull in studying nuclear
fragmentation processes. In particular, it can be used with advantage whenever one
wishes to incorporate some physical input, such as the evaporation of primordial
excited clusters, or the deformation of primordial configurations. Hence, this model
is especially suited for dealing with the above-mentioned exotic clusters, and in this
case the calculation is expected to yield better accordance with the experiments.
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FIGURE CAPTIONS

Fig.1:

Multiplicity (M) versus R;,, for Ay = 87 and 326, and a = 1.44 (dashed lines)
and 1.71 (solid lines).

Fig.2:

R{;, versus a for Ay = 87 (dashed lines) and 326 (solid lines).

Fig.3:

Apparent exponent T against R, for Ay = 87 and 326, and a = 1.44 (dashed
lines) and 1.71 (solid lines).

Fig.4:

Fragment mass distribution for 4y = 87. Squares denote data from Hirsch et
al. and dots, calculated results (normalized to A = 1).

Fig.5:

Fragment charge distribution for 137 Au. Squares denote data from Waddington
and Freier and dots, calculated results (normalized to Z = 1),

Fig.6:

Fragment charge distribution for Ay = 233. Squares denote data from Phair
et al. and dots, calculated results (normalized to Z = 1).

Fig.7:

Fragment charge distribution for Ay = 326. Squares denote data from Phair
et al. and dots, calculated results (normalized to Z = 1),
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