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ABSTRACGT

we consider a qenseralised Hubbard Hamiltonian which 1Is
invariant under a Real Space Renormalisation Group. Within the
present approximation, the Bravais lattice 1Is replaced by a
diamond—-1ike hierarchical tattice. We calculate the phase diagram
assoclated with the half-fiiled band Hubbard Haml/itonian in d = 1,
2 and 3, In the ful!l range of the dimensionless intra—atomic
interaction U and hopping t parameters. The influence of the
hierarchical lattice fractality |s analised as well.

KEYWORDS : Hubbard model, real space renormalisation group,
nierarchical iattice.
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The Hubbard Hamiltenlan (1) (hereafter dencoted by H) provides
the most simple model to study the correlation effects of
electrons in narrow energy bands, like metallic magnetism {2 and
the metal~insutator transition (3,4) (Mott transition). Moreover,
in the last years there was an increasing interest In <this model
because of Its applications In the study of high Tc oxide
superconducters {5-123.

The dimensionless Hubbard Hamii{tonign HH Is defined as

SRR NER TSI ]
H= -B{H#"N) -'t}i(ciacja+ cjccia) u anni$+ K hey (12
<iLjr.o i i, o

where f3 = 1/knT . c:&(cta) is the creation (annihifation) operator

for an electron with spine =% 1 In a Wannier state centered at
— +

the site | of the iattice, No= CipCio '8 the corresponding

occupation number, and 4’ is the chemical potential. We shall

conslder the half-filled band case, which implies ¢ = U/2. We can

then rewrite Tthe Hamiltonian (1) as

= + + }i ~ 2
H o=t Ei (Cig Cjo * Cjolia’ * Ll/E (nt? nt¢> (2)
i, jy,o £

In order to study the thermodynamics of the Hubbard model,
at least as far as criticality is concerned, we use a HReal Space
correlation—function-preserving Renormalisation Group (RG) method.
Qur approximation consists In replacing the Bravais lattices by
diamond—tike hierachical lattices, nameiy <those associated with
the ¢lusters shown Iin Flg.1. In order to obtain the RG recurrence
equations, a decimation—)IKke procedure I8 carried out over the
degrees of freedom assoclated with the Internal 3sites of the
clusters. This method proved to be an useful one In a variety of
quantum magnetic systems (e.g,., anisotropic 'spln 1/2 Helsenberg
mode! ([(14,151).

The recurrence equations are obtalned by imposing

exp( H’ + € ) = Tr exp( H ) (3)

internal sites
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where H denctes the Hamlltonlan assocliated with the ciluster, M~
denotes the renormalised Hamiltonian of the two-sites chain andg
the partiat trace operation {s carried out by summing over the set
of occupation numbers associated with the iInternal sites of the
ctuster, |

In particuiar, Hamlitonian {2) does not satisfy relation
(3). Therefore we have to search for a generalization of the
Hubbard Hamiitonlan (2) which might satisfy this relation,

This generalised Hamiltonian can be obtalned without
explicitiy carring out the decimation procedure, by using the
symmetries of the Hamiltonlan (2) that are preserved by (3),

As usualty, we define the spin and charge operators as

T z

§ = MT— m¢ P = m?+ Q$-1

— + -

S. = 6 G, P =6 G, (4)
+ + 4+

SI.. = ci. L pi. ® cl.. G‘L*

The fermlonic character of the C's operators imposes the
following relations

1 2 ‘U‘z
( St >+« Py Y o= 1

2 w*
S" Pl_ = 0 U’U' = ¥,¥,2
where
x + - x + -
S, = S +5; P, =P +P, o)
y - -+ _ . - -+ - -
s = -i(s; - 8§ ) AN ) e, )

We how Introduce & unitary transformation Up ' defined as

(see reference [1B1).
-+ =+
U, -'I'I' expl 17,9, .8,) (8)

where the {Ei} are arbitrary unit vectors and the {ri} are the
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parameters of the transformation. If Ei = a for every site i, and
E ties In the x-y plane, this transformation generatises the
particle-hole exchange transformation,

The symmetries of (2) that are preserved under (3) are the
foliowing ones

(a) rotational invariance (H_ commutes with %= Zigi);

(b) Invariance under up when Ei= 3 is in the 2z direction and 7, =¥
for all sites {. In this case qo corresponds to a trivtal phase
change of the Wannier representation ( pt(n) — i #i(x) o P x)
being the Wannler orbital located at site ),

(¢) Invariance under qp when 31= E lies In the x—~y plane provideg
that we choose ¥, = -rj, with i1,) being nearest-neighboring sites.
Such a choice Is not always possible (e.g, frustrated clusters),
therefore the choice of the ciuster must be careful in order to

apply the present method.

For simplicity let us flrst anallse the 1-d case. In one
dimenston the smaitiest ciuster which preserves the symmetry (c) Is
a four-site chain (see Fig. 1-a)., Indeed, If a three-site <chain
was used, then the Hamiitonian resulting from HH through (3), i.e,.
by taking the parcial trace over the internal site, woulg not be
invariant under (c); It would rather be Invariant under U, with IS
tn the x-y piane and ¥, =v for all 1. This Hamiitonian clearly
wil)l not contaln the originat Hubbard Hamjltontan as a particular
case £16,17) . 1f the four-site chain I1s Instead used, the partial
trace in (2) over the two internail sites will leave the desired
generalised Hamiitonian which satisfies all our requirements. To
be more explliclit, If we atribute aiternating +# and -¥ to each
site of the chaln, the four-stte chain fteaves, under decimation
Y,= +r and y,= -y for the two-site chain, whlle the ‘three-site

1
chaln leaves r1= y,= +r .

2
We are now able to generalize the half-fitled pband Hubbard
Hami itonian. We consider ali the one— and two~-site operators which
are invariant under the three symmetr!es mentioned above. A |inear



CBPF-NF-040/89
_ b

combination of such terms vields the desired Hamiitonian, namely

-+ o+
o _ z .2 .z.2 z .2 _
H, = -4 z S -8, ~ K E (s)7¢s)" + u/2 EL (s )

<i,j> <i,j>

- z pipi- (e P+ plp?)] + tl (C .C. +C._GC.) +
<i,j£ v ( b S ) (L jro Y99 0O

+ + 2
+D z (oot CivCin? (Ni_o™ N o) (7)
i, i»o
This is the minimal Hamitltonian which satisfiss (3) and
contains (2) as a particular case.

We note the following properties -

i) For 4 = ¥ = | =D = 8§ we recover the half-filled band Hubbard
Hamiitonlan (2), as expected.

ti) For t = D } = 0 the Hamii{tonian (7)) leads to a quantum
analcg of the BEG (Blume—Emery-Griffiths) Hamiltonian,

11t) Using transformation (B) it can be shown that the grand
partition function asoclated with (7) satisfies £(t,D) = £(~-t,-D).
Iv) Using transformation (6} it can be shown that Hami{itonlan
(7) preserves the half-filled band character of (2).

The above arguments not onliy apply to a linear chaln, but to
alt two-terminal clusters whose topology enables them +to satisfy
the invarlance property {(c).

The generalised Hamiltonian Eg belng now constructed,
the recurrence equations between the parameters of H, ana H_’ can
be obtained by explicitiy computing the partial trace (3>. These
relations cannot be obtained analyticaliy, since the <calculation
of exp(&b) tnvoives the diagonalization of very largde matrices;

consequentiy part nf the caicufations were done numerically.

We anallsed the RG flow of points In the parameter spage
{J,},K,U,t,D) for ¢ = 1, 2 ang 3. Then we obtained the section of
this complex phase diagram with the (u,t) pltane
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(i.e. | = J =K =D = 0) for both signs of U.

Ind = 1 there is no phase transition for any value of U O
as expected {181, For U/t > O the system I8 an insulator, for
U/t = 0 it is a normal metal and for U/t < D it is in & metallic
phase characterised by uncorrelated pairs of electrons,

In d 2 we find the same structure as in d = 1. A{t points
In the U/t 0 axis with 1/t # 0 are attracted by the fixed vpoint
(u/t,1/t,t,4,K,D) = (0,»,0,0,0,08), which charaterises a normal
metallic phase. There are two fully stable fixed polnts, nameliy
(U/t,1/t,4,J,K,D) = (X @,®,0,0,0,D). All points with U/t > 0 and
1/t = 0 are attracted by the flxed opoint (+0,0,0,0,0,0), while
points with U/t < O and 1/t = D are attracted bpy (-®o,»,0,0,0,0).
fn the limit U/t =+ o the Hubbard model is asymptotically
equivalent to an antiferromagnetic Heisenberg model, therefore we
can conclude that for U/t >0 and 1/t # 0 the system 1Is a
paramagnetic insulator. There is no Mott transition for finlite
U/t In the ground state (i.e., 1/t = 0). This resdlts are In
agreement with previous ones obtatned by a different RG technique
(19], and by Monte Cario calculations (20) . In the limit U/t » <
the Hubbard modet is asymptoticalty equivalent to a gas of bosons

1]

with hard cores and iong-ranged i{nteractions., These Dbosons are
bound pairs of electrons, However for d4 = 2 there s neither
superconductivity nor charge density waves for finite temperature.
Therefore for U/t < 0 and 1/t > 0 the system 1is in a metallic
phase characterised by uncorrelated pairs of eiectrons without any
magnetic order [22].

For ¢ = 3 the calculated phase diagqram 18 shown In Fig.2. For
U/t > 0O the system is always an insulator and there {s a second
order phase transition from a paramagnetic state to an
antiferromagnetic state. For U/t < 0O there is a second order phase
transition from a phase characterised by uncorrelated pairs of
electrons at high temperature to & mixed phase characterised by
¢charge density'waves (CDW) and singlet superconductivity (8S) at
low temperature, both without magnetic order ([(13]. The two
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ﬁ6-
critical lines for U/t > 0 and U/t £ 0 join at & point 1/t2# 0 in
the U/t = 0 axis (pure tight-binding I1imit). For W/t = 0 and

1/t > 1/t_ all the points are attracted by the 1/t = @ fjixed
poitnt, that is, that region corresponds to & metallic phase. Ffor
1/t < 1/t_ we found an anomalous behavior in the renormaiisation
fiow. Al}! the points are attracted by timit cycies of order two

rather than being attracted by normal fixed points. More
precisely, the points are attracted by one or the other of two
different cycles characterised as indicated In table 1. The basins

of attraction of these two cycies appear aliternatively aitong the
U/t = D axls for D < 7/t < 1/t . We belleve that this behavior 13
owed to the fractaltty of the lattice that has been used. It s
known that tight-binding systems present many peculiar properties
when deflined on fractat iattices : fractal spectrum, locatllsed
states, hierarchal states (21) and other anomalies (see Fig. 1 of
Ref. I241). Therefore any operation involving rescallng <(Eq. 3)
wiil be strongly affected when Bravals lattices are replaced by
fractal ones, as (n our case. At the time, it is not clear the
physical meaning (iFf any) of these fixed cycles. Note that the two
cycles are related by the transformation t+ -t , D+ -D, so It Is
clear that these two cycles in fact represent essentially the same
physical state, s8ince the grand partition function remains
invariant under this transformation. Concerning the shape of the
critical iine, for say U/t > @, one expects, for a Bravais
lattice, the existence nof a maximum for U/t # O (23). This is not
observed in the present calculation, possibly due to the
fractality of the iattice.

tt I8 also worthy to stress that no Mottt transition Is
observed at vanishing temperature and U/t # 0O, in fact we think
that the localising effect associated with the fractal <character
of the l1attice is strong enough to destroy such pessiblilty.

In Fig.3 we show t_ as a function of tThe dimension d., We
observe a critical dimension dc = 2.491. |In addition to that, we
find the same value for the lower critical dimension of the
para-antiferromagnetic transition for U/t » 1. This suggests that
the whoie critical line disappears for d = &,
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Let us focus the case of non half-filted band.in this case
Hamiltonian (1) loses symmetry (c), and we obtain that the
Hami | tonlan which generalises (1) and remains Invariant under <(3)
is the following one

H, = -4 EL S 5 - K 2_(5 isth?® -y 2* n, n +‘p§i_n
a ) R 2 io

<iLj> <i,jy

- 2 pp + 0, Z_(pp + PPY) + tthcwcp+ Ciolio?

(L, <L, o i.jre
+DZ (C; €.+ C. C..0 (n.__+n. )
*<t.j>a LT & Lo o L= =<
—auz +C 6.0 n (8)
i J)d Ld ie o o L= -0

The phase diagram associated with this hamiitonian is under
study and will be published eisewhere.

in summary, the present approach shows to be a powerful! one
to study critical proplierties of & 4great variety of fermionlc
systems related to the Hubbard model, since the generalised
Hamliitonian (B) explicitiy contains terms which account for charge
fluctuations, magnetic order and hogping, In particular we have
seen that for d = 2 the fractallity of the lattice does not affect,
at least qualitatively, the phase dlagram associated with the
half-filled band Hubbard Model for Bravais lattices. In view of
these results, we think that this approach c¢an provide a new
method to study high Tc superconductivity In GCuD compounds by
considering the non-half-filled band case, since (B) contains many
of the basic interactions that have been proposed to explain this
phencmenon (5-11].

In the d = 3 case the present approach does not exhibit the
metai—insulator transition which is expected in Bravais Jattices.
In spite of that, it provides an interesting method to analise the
Interpiay between correlations and fractallty in fermionic systems
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in the weak correfation 1imit U/t <« 1, Moreover, in the strong
corretation Iimit u/t >» 1, the fractality seems to have a
neg!igeable influence on the phase diagram. Consequently we expect
our model to be an useful one for 3tudyng superconductivity also
in the game Iimit (U/t > 1), Work along these tines Is in
progress.,

We wish to thank D. Prato, E. M. F. Curado, R. Maynard and
L. M. Falicov for fruitfui discussions and suggestions, Two of us
{S.A.C. ang F.A.T) thanks CNPq (Brazil) for flinancial support.
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Captions for figures and tabies

Fig. 1 : Renormalisation group-cell transformation. L stands for

the set of parameters (U, X, 4, I, D, t). a>d = 1; b)Y d = 2:
¢c) d = 3.

Fig. 2 : Phase diagram of the half-fitied Hubbard modei in d = 3
in a hierarchlcal iattice (1/t = dimensionless temperature).

Fig 3 : 1/t¢ va. tThe Intringic dimensionatity ¢ of the
hierarchical lattice.

Table | : Limit cycles for U/t = 0 and 1/t ¢ 1/p=. The parameters
(U, K, 4, I, t) have fixed values while the parameter O oscillates

between the values D *’and 0'%.
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~13-
cycle u K | J t p'?’ p¢®’
A - 1.406 | 0.703 0.07 0.07 7.513] 0.807| -15.83
8 1.408 | 0.703 0.07 | o©.07 | -7.513| -0.607| 15.63

Table
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