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ABSTRACT

A generalized Yangwnills.ﬁheory which is the non-Abelian
version of the generalized electrodynamics proposed by Podolsky
is- analized both in the Lagrangian and Hamiltonian formulation,
A simple class of sclutions to.the Euler-Lagrange equationsié
presented and the structure of the Hamiltonian constraints is

gstudied in defails.

Rey-words: Classical field theory; Gauge fields; Constrained sys

tems.
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1 INTRODUCTION

Field theories with Lagrangians containing higher order de~
rivatives has been the subject of conéiderable'intErest in sev-
eral occasions. - The earliest suggestions for using higher order
theories seems to be those by Weyl and Eddingtonlzl] in attempts
to set up a geometric framewo:_:k for thee:l‘ectromaéngtic field. Sub-
-sequently, higher order curvature corrections to. Einstein's La-
grangian have been proposed inxattempts.to\obtain a more sui-
table theory to describe gravitation at the quantum level. (See [2]
and references therein). Second order corrections to Maxwell La
.grangian have .been_préposed by Bopp ES] and Podolsky Eﬂ] with
the purpose to remove . the infinitieé of the theory. More re
cently higher order theories have been ua;tasexﬁechanism of re
gulation of supérsymmetric ‘theories Es], and alSoaszcorrection-s
to Nambu action in string theory[:sj jus£ to mention two exanples,

Classical theories with higher order derivativesfxxéontains
massive excitations which give negative contributions to the e-
nergy density of the system. and can (possibly} violate causali
ty. On the quantum level those ghost type fields show up as ne-
gative norm states so that wmitarity could be violated. In spite
of these undesirableﬁaspects such theories are endowed with at-
tractive properties including the improved. 'soon.vetr.ga:lcéfof:l:he Feyn
man diagrams[:aj. (For the general aspects of higher prder quan
tum field theory see the paper by Pais and Uhlenbech C7] )

We feel it is worth to understand the. general properties of
these .theor_ies\and in particular .the p‘roblem of ghost states in higher

order gauge theories. As our first step in this direction , this‘-‘
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paper is devoted to an anlysis of the (claésical)unon-hbelian
version'of_the.geheralized electrodynamibs.as proposed by Po-
dolsky[;4]. (The canonical structure of the Abelian model has
been presented in ref. [:9].)

The paper is organized as. follows. In the second .section
the I;agrangian. formalism is developed and in section III a
simple.solutidn.of:Euler—Lagrange.equathxm is presented. Sec-
tion IV is devoted to .the Hamiltonian formulation: We obtain the

constraints. and construct the first class Hamiltonian:; the

B generatdr'of. gauge transformation isconstructed and some .com-

ments are.made on the gauge fixing problem. Some useful _ex-

pressions and calculations. tools are presented in the appendices.

2 THE LAGRANGIAN EQUATIONS. OF MOTION AND CONSERVATION LAWS

The generalized Yang-Mills Lagrangian we are going to con

sider is

11 - wd P8 LMYV _ _onlgd o Vo &,y _
T F,,Fa ~— a°D'F  DF. "+ JA 12.1)
where j:(x)_is an external current and a is a constant  with
dimension.of length. From (2.l) we obtained the following e-
quations of motion:

D FUCI +. 2&2 E'Jzn 'Fla.
v a N A7 a

- 20fp°p*p® ] =33 (2.2)

where we used. the notation B2 = D*D,. It follows . from . the
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above .equations’ that the ' external currents is conserved

in the covariant sense, DQJ:}= 0. Unless otherwise stated ‘we

shall only consider the free field,-J: 0.

In terms of the chromoelectric and chromomagnetic fields

-k _ - -1 kij_a
Ea' Fa ’ Ba 5 € Fij {2.3)
we can express -the Lagn@ngiaq_and.gggations of moticn as
2 z _
L. 1" -8 - aZI:(DkEk}ZHD.Ek + (pxﬁ)‘_‘JZ] : (2.4)
(1 + 2a2m2)p, E* + 2a2 E’Ek'%ﬁk + (DxB)k] = 0, (2.5a)

(1 + 22208 0, + ©:x)* + 422 [E*,0,5"]

- 2a? .D_j,D.k] (Doﬁj + (Dxﬁ)j) =0 . (2.5b)

where i(Dxﬁ)k = a&,D B

L] J

The symmetric gauge invariant enérgy—momentun tensor is

given by

- - wabna 1 a Laf
Tuv F F\JB + > nu\JFGBFa _

- 2 q’ﬁ A af.
a?n | (2?5 D D,FL, ~ D.FFp Fm)

- 2 a8 Ana’
2a (29"1?“81315’ + 2p, P2 nlz - D°F] D Fm) +
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1 y a
2 QN Y + p® A a \ an2pd _ "+ D DAFa
+ 2a%F) (n“pxr-a DPpiFR) + 2a Fw_.oupxr

A
(2.6)
which is conserved,
3 TV =0 (2.7)
u
and not traceless. (When external currents are present one
cbtains 3u.'1'“v ='j3F:v as expected). The energy density = for
the gauge fields, E = Too' is
= - OB i o8
E F FoB 2 F FaB
) aB A af N
- (2!‘a DaDAFaB' DnF'ai; D FXB
- 2a2(4p F® b F** - D*F2 DIF?
A ko Jjo
dalpd Aj ipkpa
+ 4a F_oé(DoDxFa + pID'Fp ). (2.8)

From the above expression one cannot conclude: that the  total
energy of the gauge fields is positive even if one ' .:::assumes
the standard behaviour of the fieilds at spatial infin:i;ty and
static configurations.

Finally, for the total current .we obtained

Mo BY L 22 erqbny 28V _ pVp pOHY
Jg! avE?a + a (ﬂDu__l_’a - IZ)IJ_Q‘_Fa ):I (2.9)

where we have used equations (2.2), .It is clear that this cur
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rent is conserved,

2 5% =0 (2.10)

3 A CLASS OF PLANE WAVES SOLUTIONS

The equations of motion (2.2) admit a very simple i ¢lass
of solutionS'whibh are the generalization of the non-Abelian
plane waves obtained by Coleman{:loj. The general Ansatz for
the gauge potentials is

A% = (s 4+ ég}£u¢(£.x;:gézx.f%2xi

H 1

-3 a a -
= (dl_+ 63)£u¢(w,n1,n2)- . (3.1)
In the above expression £ is a light-like vector _while=(%)
. 2 sy <y, '
and (n) are space~like, satisfying 3511"1) =0, (zii) . (131) =0, Chosing
£ = §0 - g3 andﬁcﬁj = 61-',(%9 = §2 the gauge potentials as- -
U u u u U
sume the form
a o (ad a 0 _ g3 0 - 3 .04l w2 3. 92)
Au (61 + 63)(&u _Gu)w(x xJ s x' , x4), {3.2)

The above Ansatz leads to Eﬁ ,K ] = 0, [K ,i"‘ :I = 0 80
a” B _ o Hv .
that the non-linear terms do not appear in the equations of
motion. For the chromoelectric and chromomagnetic fields  ome
finds

X = (¢ + 63) (g% AL 4 gk 2, (3.3a)
a a a 1 - 2 9x2
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BE = (51 +63) (s% 2L - gk 28, , (3.3b)

axi ! ax?
Hence,-ﬁ# and ﬁa are equal in magnitude and amthzxnﬁﬂ.to each othen

and to £:

2° - ﬁz = 2|22 4 (—2121

a_ ax’ ax2

= k, _ gkp =
anﬁa = 0 r Ea‘ek Bade.k = 0 !

which are desirable properties for a plane wave solution.  The

energy density corresponding to (2.2} is given by

E = 2]:(—‘L)2 + (—P—”;JZJ + 4a=(-?—*-_ ——‘i’-)z

ax! ax!

2 9y 3, a2y 32y 3y 3 , 3%y azw .
2 D ¢ IXE ax% ax? ax

Now, using (3.1) the equations of motion lead to the .fol-

lowing equation for the function y:
(1 + 2a2v2)v2y =0 {3.5)

2 — n2 2
where . ¢ 31 + 32.

leaves the x? - x? dependence of y arbitrary, one can chose ar-

Taking intc account that the above equation

bitrary bounded functions A(x? - x3),B(x% - %?) and C(x? - x3)

so.as to express its solution as
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P (x? —x3 x),x2) = A(x% -x3)x! +B(x? -x3)x2 +C(x? -x3) ¢ (x!,x?)

(3.6)
where
? : _— ,i - .-.-’-‘ > .
s x¥,x2) = szkf(k)el‘ Xy faZkg(E)elk"‘ (3.7)
with
k2 =k2+k3=0 , Kz=K2+ K= . (3.8)
2a2

4 THE HAMILTONIAN FORMULATION

The Hamilton@ian approach -to higher derivatives theories was
first .develeped. by OstrogrddskiiEllJ . for. non—singular
sttems{*)} and’ his method ﬁ;;hsists' in defining one:hore
pair of canonical variables and so doubling the dimension of
the phase space. For singular higher derivatives systems che can  in
an almost straightforward way generalize Dirﬁc'sEﬁz]; theory
for conﬂxaiﬁed systems to combine it Ostrogradskii approagh}
However, the resulting framework is rather cumbersome when ap-
plied to a complex Lagrangian like the one given by (2.1) and it
is particularly so when the fields under .consideration care
gauge fields. Oné can easily be convinced that the source of
difficulties relies on the non-gauge covariance of the .defini-

tion of the new canonical variables (see eq.. (4.3) below), a

(*)By a singular system we mean one for which the generalized
Hessian matrix is singular. In the present case we have
det (32fy/3n2n0) w0,



CBPF-NF-040/87

question which ‘we are presently investigating.

We start by expressing the Lagrangian as

__l.a_ij _ 1 .a goi
i - I3 Fi.jFa 2 FoiFa

ok

°%p r®
8_00

k

"'azeP*F°1D°FpJ + D, F¥pip? +p F
i"a ) a i"a j o k

R ok joa
+ 2D FO°D Fik) . (4.1)
The system will now be described by two.paixs of canonical va-

riables, (Az,p:)'and (B: E iz, n:), with the canonical momenta

defined by

P = —iil = - 2a2(D.F°*s° - p*pP

8 ) (4.2)
a s O A"bh Ta ak
3k
Py - —:"‘-;S'" 2 3k(a—aLu)" 2,1, =
9A, (3,8, A,)

. 2 e trwkA§ 0 o | 0j, b
F,, * 2a 3k{Dbu")6a_+.ak(ijk )5;]

CrApgqd -

- 2 _ aMpina g0 _ se k-a y _h
2a Cabc(ZAoD Fui\ JlC:D Fu.)\s'u_ -AaD Fok) l-j[.a (4.3)

From the above expressions "we cbtained the following. . ‘primary

congtraints

b b
o

¢(1) ~ 0 , (4.4a)

B _. b k b | -
b2y TP k ~ 0 (4.4b)
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Following the usual procedure we now eliminate ﬁt from

the canonical Hamiltonian

H = Jd’x[%?i“'+ =Ny -gﬂ] .
c a4 a a. - a
From (3.2) we get

+ DIF’, + 3. B

—c c cpd
cbchoFko *_ 3o'(_A.lr,Au'}]

which we substitute in. the expression for-H%.to obtain

s
il

Jdax[é'ﬁgi- L. p2pd 4 pipipe,
: a’a 432 J & a ji

1papij 1

F2. F F? p°1 4 a2p,p°lp pol
4 "ij" a 2 "oj a0 1'a j a

d

¥ €. -13ada.at + 28%niad v ¢ adafaln?) (4.5)
adc a o jo jao fefo;

Introducing the fundamental Poisson brackets

{pz(x} ,Ab(x 3= - GSSC3)(x-x ),
. Broryio - Bo(x) o =+, : .
(Mg (x), By (x')}= = 678 8" (x=x") (3.8)

one.can show that the consistency.conditiohs for the cmstraints

(4.4) lead to the secondary constraint

1Pacy - ¢ . *

b. = k a I K c \ . ..
4,(3) =D (pk + cabc ko abc .bF-Ro n 0 (3._7)
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The set of constraints (¢21)3¢22)r¢%3)) is first class as one

can easely verifiy. We can now write the extended Hamiltonian as

(=}
i

1

a3 (B o,cypk _ 1 _—ack k. i, a
de[(pk CancPeli! By 5 Tl + MDF,

L

L o2 oi 0j 1 a Lij | 1 oa qof k,o_c
+ a DiFa DjFa + 1 FP,.F + = F .F CbcdnbAdqu]

+

3 k, a ' 0,.Cy ~koc ‘
+ C(x) (D (Py ~CopcPpiy) Ca'hqnb.Fko):I

1] a 2 o) a.

[ax [(jé;-;x.)'nj AL o +82) (o8 -pkn2 )

(4.8)

where the Cil)(x), i=1,2,3, are arbitrary functions. The a-

quations of motion with

ahove Hamiltonlan are

A: = B: + (l(l:)-"'-{x)
A2 - B2 - n;?:)a(x)
by = - Dkniﬁi + Dinin:
f CachZng-+2a2C
o0 B

= CpeaferaPePalk

1) 4
B =(c) % (%)

.full gauge freedom generated by

i_a
DFik
Y oi c oi
acb‘athDin + FokDiFa

the

(4.%a)

{4.9b}

(4:9¢c)

(2) , .0 d ., 63) o.b
+ (cc.__ .+Bc)C 47€g Cyp Cop AT

caank dbc~cfa

(4.9d)
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=11 .
sa _ _ _1 a 0o _
By = 2a2 B+ p* F Ab abcAcho
_ (2) .. q°y - €3) aC (3)
+ D e, '*Ba)- % Chacfko * abcAbD C (4.9¢)

The equation for H simply nqxoﬁxms the- definition (a.3),
while for. p we recover the axmlsuamy condition for the cons-
traint (4.4b}. Following the same steps as in @ Abelian caseEg]
one can show 'that the - system. of equations (4.9) is .edqui-
valent to the Euier?Lagrange-equations (2.2).

With the first class constraints (4.4a,b) and (4.7) we ob-

tained the following generating functional of gauge transforma
tionsEs]

- 3 3m¥ 3 ol
G' Jd x(p abc o )D 52 (x) + Id xn nu-u- Jd x[ ,D]
(4.10)
where A% (x) are.arbitrary“functions and 9% = 53. It is easy to
verify that it generatesgthe»correct.transformations for A:(x)

on B:(x},:namely_

5A: = {A;,G} =p g2,

sB

a
3, (D, 8%,

w o

The generator G obeys the algebra

{6, @a), 6(r,u)} = G(ar, (uasan)) (4.11)
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where
G(@I‘,,{w&_’-m‘)) = de(p: ';'-'CcdeA:n:')Dg (cahciibrc_l

" o ¢ b c.b
+ den D E:a_‘b'c'm' I - w .;;_..._):I
| a - b.e
+ de Da' 'Qo]na(cahcﬁ rl. (4.12)

" For the choice 52 = Gg'both_A:.and B: transform under the ad-
joint representation of the gauge group and in this case we

have.

16,6} = ¢ .G . (4.13)
The bhoice of suitable gauge conditions for this. systen is
" -sbviously not .a trivial task far it ivherits all the difficulties
of the usual Yang-Mills theory besides the pecullarities intro
duced by the second order term of—.the-Lsgrangian Hence, in
order to satisfy the 1n11:_1al data for the system the gauge con-
ditions must involve the. :E:’Lelds and its derivatives up to the
 thérd order. A good candidate for a generalized Coulomb  gauge
condition, for instance, could be.2,[A] = (1 -2a20) V.Ka X 0.

Using this gauge condition one can follow the same sgteps as in
Yahg-Mills theorytu':l but it leads to very complicated results
with no practical use. In particular, canonical gquantization of
this system certainly poses unusually diffioult problems. gpe
way to c:.rcunvent this sltuatlcn would be to reduce the order of

the Lagrangianuby-lntroduc1ng some auxiliary field interacting
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with the Yang-Mills fields such that on shell the original theory
is recovered.. Of course this is not possible in thé‘general-case
but it does work in the case uhder.considerationthjj, and the

resulting theory admits a more tractable Hamiltonian formulation.
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APPENDIX A: Notation,convenctions and some calculations tools

In thits paper the Minkiwski space-time metrie is Ry T diag (+1,
-1,-k,-1), with u v = 0,1,2,3. (Latin indices i,j, take the
values 1,2,3.) The gauge.group G is -supposed to be semi-simple
and compact. The generatars of the corrésyonding Lie_-algebra
{T;},-a =1,...,N, satisfy the commutatioch relations.[§§fT§] =

+

cabcTc' Ta = - Ta.

The field strength tensor

a _ a _ o
F, = 8,A5 - 3, A" 4 gC,y A

b,¢
PR A

ulby (A;l)

(we set the coupling constant g equal to.one) satisfy the fol-

lowing relations:

E)u,Dv:l“,p_ ='-.Efuk,¢| ] AAa2)

DD'F"_B:I = 0 (A:3)

For the variational calculations that lead to the equations

of motion the following ewpressions are useful

a _ Fald _ Tnd
8¢, =D - DA , | (A.4a)
= ca 2 mCg€
Gpuf (x) - cabcéauf (x} . (As5b) |

Now, concerning the calculation of the conserwed.qmntities, =,

direct application of Noether's theorem to. the particular La-
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grangian we studied in this paper leads to lengtﬁy_calculations
andieunbersome non-gauge invarlant results. However, one - ‘can
avéid a lot of work by using gauge invariant variations: as
propesed by Jackiw and MantonI:LGJ which automatically lead to
gauge invariant conserved .curxenté. Tﬂeir procedure consists
in the following. Deﬁotinghthe space~tine coordinate transfor-
mations by &x" = mizg(x) z E"(x}'whnne'{EEGX)} are.Killing vec-
tors, one can write .the corresponding variations of the gauge

!

potentials as

EAS = g“F:u . (A.6)

For the field strength one obtains

--a'='u._&- o, a Oy & -
§F E Daruv + (auE )Fav_+ (3§ )Fuu (A=7)

Using (a.2),
- a _ A a

80 that

3(D pa
D F vl [é /D ] PR *p oDy F uu

. Ar ol '~ n phypd
+ (0,2 ENFy, - (3 3, 80)F,

- (a s llJ F + (a £y )lD F . {A. 8)
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The above expressions is all that is necessary to cﬁlcuiate the
gauge invariant Noether currents. We remark that the application
of this procedure is admissible since;ﬁiis gauge invariant - so
that EA:ﬁcan be expressed as.in (a-6).

Clearly, if one is interested only in the engrgy-—momentum
te:qsor Tuv' the easiest way is to. apply Hilbert's prescription..

which leads to the following general expression.

=i - al(V'“ Y S (3.12)

(ata,g")

]

1. '
-iﬁ Tuv gpv
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APPENDIX B::'Some useful Poisson brackets relations

a ,. .: b _oi, oi
dxFoi(x]{po‘z)"’Fa {x)} = - DiF

b
a D;F e p) (2) , D FO* (x)} = DD D PO
b a k_oil
denkra (x){p_(2) ,DkFoi(x)}: D, D,DFp
. o] . 3.
de iFa (x){ll {2) ,D.,F " (x)} = D,D.F,
(4 pir®t (x){1%¢z) | D.F%. (x)} = DID.FP
j X ""a kT PV el M i ok
a k oi | ok
Foi(x){Dknb(z) 'Fa x)} = Dka
[a p.F°L (x) tp, 1¥(z) , D.F°I (x)} = p¥D,D.P0L
jox"i%a bt " Y% a ki b
ip - j
J x (x]{D n (z) ,D'F (x)} D D DJF K
'de (x){pk(z) ' Dy F'"’J (x}} =c @& DleF:‘ + F leF:]')
iga = ok
Jax (x){pk(z) ,D F ;0 =c ux D, D']F + F nkrm) .
. k,.o ol
den F° (x){kab (z) /D, F L)y} = Cpogl (A.D.D.F, + FoleFa )
_] - k,.o j.i oi a.
Jd D, F (x){D pb(z) +D°F tx)} Cb D (ACDjD F o+ F DF_ .)
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