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Abstract

The three-state antiferromagnetic Potts model on a family of bi-
partite diamond hierarchical lattices is investigated. We prove that
the correlations have a power law and that the order parameter van-
ishes in the entire low-temperature phase as predicted by Berker and
Kadanoff. The internal energy, specific heat and entropy as functions
of temperature are also exactly calculated. It is showr that the Jocal
order parameter has two distinct multifractal structures : one at the

critical point and another at the unusual phase.
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1 Introduction

Although the majority of macroscopic physical systems and statistical me-
chanics models obey the third law of thermodynarmics, there are notable
exceptions like, for example, the substances {1] ice, carbon monoxide and
nitrous oxide, some frustrated systems (e.g. Ising antiferromagnet on the
triangular lattice [2], spin glasses [3]), some Potts antiferromagnets (4] and
some other classical discrete spin systems [5]. The study of statistical prop-
erties of such systems is much more complex due to their infinite macro-
scopic ground state degeneracy. In particular. Berker and Kadanoff [6]
suggested, using a one-parameter renormalization group (RG) argument,

+

that systems with finite residual (i.e. at null temperature) entropy per
particle may present a distinctive Jow temperature phase v:'ith no obvious
order parameter and with a power law decay of correlations. In fact. they
obtained, within a Migdal-Kadanoff RG approximation. such unusual phase
in the g-state (¢ > 2) antiferromagnetic (AF) Potts model on d-dimensional
hypercubic lattices whenever d > d.{g). where d.(g) is the lower critical di-
mension for fixed ¢ below which there is no phase transition. However Ricz

and Vicsek [7} argued that the appearance of the distinctive phase could

be an artifact of the one-parameter RG treatment. Since then, muck work
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has been done looking for this phase in the AF Potts model on different
Bravais (see, for example, [8] and references therein) and fractal lattices
[9,10.11,12]. In particular, many approximate calculations (see [§] and ref-
erences therein) for the ¢ = 3 case on the bipartite cubic lattice indicate a
continuous transition at T, # 0 from the paramagnetic to the long-range
ordered BSS (broken sublattice symmetry) phase. The latter is charac-
terized by the predominance of one of the states in one sublattice and of
the other two states (randomly distributed with equal probabilities) on the
other sublattice. Excluding Ono’s simulations [13] (which. according to [8],
have an insufficient number of Monte Carlo steps) and some indications for
the divergence of the correlation length below T, despite the nonzero order
parameter [8], there has not been found any evidence for the unusual phase
in the three-dimensional ¢ = 3 case or for any value of ¢ on a number of
Bravaic lattices. On the other hand, the same is not true for some fractal
lattices, where this phase has been established by either exact RG trans-
formations [11,12] or by the Migdal-Kadanoff RG approximation {9,10]. It
is worth mentioning that the exact results of [12] show that the distinctive
phase is neither an artifact of a one parameter RG treatment nor an artifact
of the Migdal-Kadanoff bond-moving procedure and can, therefore, occur

in & lattice which is not a combination of series and/or paralell bonds. The
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unusual phase was detected in the RG procedures {9,10,11,12] through an
attractor at a nonvanishing temperature — a feature which appears also
in the RG framework of Berker and Kadanoff [6]. Furthermore. it was
also proved {12], for the Ising case, that the correlations decay algebraically
with distance along the whole unusual phase. But a detailed study of this
phase including the exact temperature dependence of the order parameter
and other thermodynamical quantities has not. as far as we know, been
reported in the literature.

Herein we consider the 3-state AF Potts model on a family of diamond
hierarchical lattice (HL) types which belongs to a bigger family of HL's on
which the Potts antiferromagnet presents [11] the dist.in_c:t.ive phase. Using
an exact recursive procedure [14}-[17]. we prove that the order parameter
vanishes for all temperatures and that the local magnetization distributior
has a multifractal structure at the critical point different from that along
the unusual phase. We also calculate exactly the average internal energy.
the specific heat and the entropy per spin as functions of temperature,

The outlin'e of this paper is as follows. In Section 2 we define the model
and the family of HL’s to be considered herein. In Section 3 we prove
that this family of systems has a low temperature phase with a power law

decav of correlations. In Section 4 we derive the recursive relations for local
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average quantities whose iteration Jeads to multifractal local magnetization
profiles. In Section 5 we calculate. in an exact way, the order parameter, the
internal energy, the specific heat and the entropy. Finally, the conclusions

are given in Section 6.

2 Model

Qin and Yang [11] considered the g-state AF Potts mode] on the fractal
family of diamond HL types whose generator is constituted by P branches
in paralell. each of which has L bonds in series. They showed that, for an
odd L and for 2 < ¢ < ¢, (where g. is a cutoff value of ¢ which depends
on P and L), there appears the type of phase predicted by Berker and
Kadanoff. Herein we shall consider the simplest family ;f HL's (with a
minimum number of L) of this bigger family on which the g-state (¢ being
the minimum integer below ¢ ) AF Potts model presents the unusual phase.
Its generator {or basic cell) contains P > 10 branches of L = 3 bonds in
series (see graph GU), for P = 10. in Fig. 1), and the HL is constructed
as follows. We start with a bond between the roots R4 and Ry (see G,

for P = 10. in Fig. 1) and. in the next level, we replace it by the generator

and continue successively substituting each bond of a level by the basic
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cell. In the thermodynamic limit (n — oc) this family of HL's has & fractal

dimension [18] d;(P) given by

In(3P)
In3

dy(P) = (P210) 1)

in particular, d;(10) =3.09....

Notice that the considered HL family is bipla.rtit.e. i.e., each HL can be
divided into two interpenetrating sublattices A (represented by points in
Fig. 1) and B (represented by squares in Fig. 1) such that any site of one
sublattice has as nearest neighbors only sites of the other sublattice at any
level. Furthermore, contrarily to what happens in the case of L=even, each
point belongs always to a given sublattice independently’of the level n.

At each site 1 of the HL with P branches (P > 10). we afsociate a Potts
variable 0; = 0.1,2 and consider the 3-state AF Potts model described by
the following dimensionless Hamiltonian at the n-level :

BHP) = —3KPI Y b(oi,0;)  (B=1/keT. KV = 8J75Py (2)

(i3}
where JIF) < 0 is the AF coupling constant between nearest neighbor
spins at the n-level of the HL with P branches, the sum is over all nearest
neighbor pairs {1, 7) of spins. 8{c;. ;) is the Kronecker delta function. and

T is the absolute temperature.
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3 The Distinctive Low Temperature Phase

Let us now prove that each system of the above mentioned family has an
unusual phase where the pair correlation function obeys a power law decay.
For this, we consider the RG transformation defined by the renormalization
of the basic cell (see. for P = 10, n = 1 of Fig. 1) (with reduced coupling
constant A''F) between any pair of neighbor spins) into the single bond
(n = 0 of Fig. 1) linking the two roots with an effective reduced goupling
constant K, The RG recursive equation_ 1s obtained by imposing that
the trace of {exp(—AH,{ K'{#)))} over the internal spins (i.e.. those different
from the rooted ones) of G is proportional to {exp{—8Ho( K*")))}. This
1s equivalent to preserve the correlation function between ogy4 and oggp [19]

and it Jeads to :

(t.P)=

(3)

1~ \F
(1+2t3)
(5)

14217

where we have used. for convenience. the thermal transmissivity variable

142

[20] defined by :
- E—3f\'

(RS o

{4)
Thus. if we fix P and ¢, (the thermal transmissivity at the ri-level), we can
obtain the transmissivities at previous levels by iterating Eq. (3). namely,

lnoy = F{tn) thoa = ¥(too1) = #3{4,) and so on umil #, = t‘“](t,,) which
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corresponds to the equivalent transmissivity between the roots of the HL
with P branches at the n-level [19]. It is worth mentioning that our RG
transformation (Eq. (3)) is an exact one due to the recursive construction
of each HL and to the fact that the symmetries of the ground state are
preserved for this choice of cells {12].

The plots of t’ versus t and their corresponding phase diagrams are
shown for P =9, P = 10 and P = 27 in Fig. 2. We can see from it the
appearance of an unusua!l phase. for finite P > P, = 9.25. .. (or equivalent]y

for dy(P) > d. = 3.025...). characterized by an attiractor at a nonzero

1§ 1]
temperature tf:r’ (for P = 10, f—'%?f* = 0.286.. ., or equivalently, tﬂg) =
—0.477...), in the t ature ane0<ﬁﬂl<i’ﬂ—7}{-ﬂf'( equivalently
A77...) emperature range 0 < 3 S (or equivalently

-1/2 € t < t!P)). We shall use the index notation AF to designate the
unusual phase. despite the fact that the staggered magnetization is nul

along this phase (as we will see in Section §). For temperatures above

P - - . - .
%%T-J (or t¥! < t < 0} all points flow under successive RG iterations

to the paramagnetic attractor 53%‘ — oo (or t, = 0). defining thus the
paramagnetic phase. In Fig. 3 it is shown the plots of the transmissivity

t'/7 and the critical transmissivity ") versus the fracta! dimension d +{(P).

Notice that, as d; diminishes tending to d.. the fixed points if;’ and #9)

approach each other until they merge, for d; = d,, into a single marginal
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one. Observe also that, for d; >> d., the AF attractor convergesto T = 0.
These behaviors confirm those suggested by Berker and Kadanoff [6] and
are similar to those obtained [12], in &n exact way, for the ¢ = 2 and 4-state
AF Potts mode] on the m-sheet Sierpinski gasket with side b = 4.

The correlation length critical exponent v'¥) can be determined by :

Inl
(P) =
VW= e . (5)

where L is the chemical distance between the roots of the basic cell (L = 3)

and

AP) = at'(t, P}
© dt 4P

(6)
The plot of ¥'F} as function of d;(P) can be seen in Fig. 4. Similar to [12],
(P} diverges for d; = d, as a power law, namely v!P) ~ [0.841.. }(ds(P) -~
d.)"9%44? as d; approaches d, from above.

Let us now prove. through a procedure similar to [12]. that the corre-
lation function I' 4z between the two roots of the HL with a finite number
of P branches decays algebraically with distance along the unusual phase
whose attractor occurs at tf‘?. We define the correlation function between
the roots of the HL at the n-level and at the temperature corresponding to

the transmissivity ;. T'f:‘%(t.,) , by [21]:

. 8(0ra.0rE up ~
Fije,) = HoRnomsder 21 )

DT

y
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where (...}, p means the thermal average taken at the n-level of « HL
with P branches. On the other hand I‘(")(t } is related to the equivalent

transmissivity between ors and ogp through [22] :
ha(ta) =0 =£0t,) Cs)

where. as already pointed out, t{*) is the n'* iteration of Eq. (3) applied to
t,.

Expanding #'(¢,) around the AF attractor we have

{P) {(P) (P)

P
(tn) >ty + rap(te =ty t, =~ t02) : (9)

' P . . . ;
where rfﬂj = -’—L-J ]Lpr;, 0« rfu—J < 1. After n iterations of this equation

we get

=GR+ - =) T o)

Combining (8) and (10) we obtain, in the fractal limit (n — oc),
Tap = 53t - TiPta)) ~ 2t — (S ~ L7297

with

(P}

¢ " In3

(12)
where L, is the chemical distance between the roots of the HL (L, = 3%).

This result is in agreement with the suggestion of power-law decay made

by Berker and Kadanoff [6] .



CBPF-NF-039/93

-10-

Assuming that, similar to the asymptotic behavior of FCap(lag — o)

in the d-dimensional Bravais lattices,
Tap(Lap) ~ Lyg' ~"™") (Lap — o) (13)

we obtain n4r versus d;(P) as shown in Fig. 4 by triangles, which is similar
to that found in [12]. 1t is worth emphasizing that this nsr exponent is
valid for the whole unusual phase (~1/2 < t < #{)), but not necessarily

for t = t!P) (see Section 5.2).

4 Local Average Quantities

In order to characterize better this unusual phase, we s}‘xall calculate in
an exact way the order parameter and other thermodynamical quantities
as well. For this, we shall use a recursive method developed initially for
Ising models [14,15,16] and. afterwards, extended to the Potts model {17]
on HL's. This technique allows one to obtain exact recursive relations for
local average quantities, from which one can derive global thermodynamical
functions such as the order parameter, the internal energy and the specific
heat. Let us. in this section. focus on the calculation of local average

guantities.
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4.1 Recursive Relations

Let us now explain the geners!l idea of the recursive method [17]. First.
we consider the graph G (i.e. ‘the HL with P branches at the n-level)
as composed of two subgraphs G!™ and G which intersect at the sites
with spins g; and u, created at previous levels (see Fig. 5); one of them
being necessarily aggregated at the (n — 1) level. The graph Gg"} contains,
besides u; and u3, the spins o; and o, which are aggregated at the n-level:
the remaining spins belong to G(;]. We, then. fix the rooted spin Okas 2
the state 0 in order to break the symmetry between the thermodyn@ical
configurations. The next step consists in replacing GV by an effective

bond Gi‘}’ linking g, and g, (see Fig. 5(b}) whose effective dimensioniess

Hamiltonian ’Hi'}) is given by : -
MY = —3[A6(0.0) + AV6(u2. 0) + K 6(uy, o) +
+ K808k 0)+ CM] (14)

In Eq. (14), h;"] and hg") are effective fields acting on the respective spins
; and 3 induced by the above break of symmetry. The parameter R
is an effective coupling between y; and u, due to the remaining spins of
G‘;’ and Ké“} is another effective coupling which acts on y; and Ha only

when they are both in the same state as og,. C "} i¢ a constant oniginated
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i'}], we

from the renormalization of the energy. Once we have introduced G
calculate two separate sets 5; and S, of local average quantities in terms of
the coupling constant A, and of the effective parameters h;“), h(;), K&
K& and C™. The set S, contains thermal averages of local quantities
involving only the spins px; and/or g, and the set S; refers to averages
which contain the spins o, andfor 0;. From the set §,, we obtain the
effective parameters as functions of its constituents averages and of A,,.
Finally. the replacement of the effective parameters by these functions in

S, provides local average quantities involving the spins generated at the

n-level in terms of averages containing spins generated at previous levels of

the HL with P branches. -

We obtain, thus. the following system of coupled equations :

m™ = aml) +bml) 4 AlRCD

m{" = a,mf) + bml) 4 ¢, Aln-1)
A = (1+2a, — b)mY + (b, + 2¢, )Af{;;j* | (1)
AL, = (an+ba)mf) +mi)) + duAGY
AV = (14 2a, = ba)mW + (b, + 2¢,)A0ZY  (I<n)

where we chose to define the local magnetization m'* at site i of the k-level
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HL with P branches by
{k) — . -
m; ' = {6(c;,0)p—1/3 (16)

without the normalization factor 3/2 since it leads (as we will see in Sec-
tion 5.1) to a normalized order parameter. The function AE:}, a kind of

correlation function which appears in this technique as a natural variable

in the case of the g-state Potts model (for ¢ # 2) [17], is defined by
A = 3(8(0,,008(0,, 00ep — (Bloioer . (17)

In Eq. (15). the coefficients a.. b,, ¢. and d,. are functions of the
coupling constant K{¥) at the n-level of the HL with P branches which are

given, expressed in terms of the transmissivity t,, by :

tn(1+tn) ta
a, = ————== by = ———
1+, +12 14+t +12
$2(1 - ¢2) t2(1 4+ 3t, +12 — 2t3)
& = d. = (18)
(1+22)1 41, +12) (1 4+ 28301 + 1, +¢2)

where the set {f{,.t..1,....1o} can be obtained from t,_, = t'(t.) with
t'(t. P) given by Eq. (3).
Besides the coupled equations (15). we also have the following recurrent

relation (which will be used in the calculation of the internal energy in the
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next section) :

(‘5(#1-02))n.P = (8(pz, 0y ))n.P = (6(01&2)):‘.? = Ch(é(plsﬂZ))n—l.P + fn

(19)
where
€. = b, + 2¢, (20)
and
2a, — b, +1
fozaz bt (21)

We shall refer hereafter to the values of the coefficients %k, (where k, =
@y, bn. Cq, d., €., fo) evaluated at the critical temperature t. and at the

attractor temperature 1,5 as k. and k4r respectively.

4.2 Local Magnetization Profiles

The successive iteration of Eqs. (15) and (3) allow us to obtain, for a fixed
P, the local magnetization distribution for both sublattices A and B at
any level n for all temperatures. In order to analyse this distribution. it is
sufficient to focus on any one of the shortest paths between the two roots
R, and Rg (represented by a broken line in Fig. 1} since all of them are
equivalent by symmetry.. Similar to [14.15,16]. we identify each site of such

2 path by a pair (s,1) where ! is the level at which the site appeared for
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the first time and s 1s the chemical distance from the site to the root R,
within the level I. These sites can be arranged over the interval 0,1} such
that the pair (s,!} corresponds to the point r = 5.3~/ for & n-level HL (with
1=1,2,....,nand s = 1,2,4,5,...,3 = 1).

In Fig. 6 we show the profiles of the Jocal magnetizations m,, versus z
for a 7% level HL with P = 10 branches at the critical temperature T,
(Fig. 6(a)) and at the attractor temperature Tr:} (Fig. 6(b)) with the
boundary condition m{xr = 0} = 2/3 (a consequence of og4 = 0). Similar
profiles are obtained for other values of P (P > 10). Notice that positive

(negative) magnetizations correspond to sites from the sublattice 4 (B;.

4.3 Multifractality

The magnetization profiles presented in Figure 6 exhibit a highly irregular
distribution of magnetizations on the HL. this irregularity being an intrinsic
property induced by the fractal topology of the lattice. As we will show. the
magnetization profiles have multifractal structures similar to that already
reported for the ferromagnetic Ising [14,15,16] and Potts {17] models on
HL. I these papers. the multifractality is a characteristic of the system at
the critical temperature. Here we have two distinet multifractalities : one

A

at the critical temperature and the other at the whole unusual! phase —
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these multifractalities being characterized by distinct f(a) spectra.

In order to compute these f(a) spectra, we cover the magnetization
profile support at the n-level with boxes of size I, = 3~" so that within each
box there is one spin, which gives origin to the measure in this box. We
define the local measure at the 1*" box. at the n-level HL with P branches.
by

m ™o, |

p} (i=1,2,.... 3" +1) : (22)

—Zjlmo,l ' '

As the box width goes to zero, or equivalently the HL-leve} goes to infinity,
the measure at the box 7 scales as p, ~ I** where @, is the Holder exponent at
this box. In the same limit, the number of boxes N, with Hdlder exponent
between a and a + da scales as N, ~ [-f(@),

Foliowing the method of Chhabra and Jensen {23.24! we" define a set of

measures {u{g,n)}. where the measure at the box 1 is given by

[p™)e

pilg.n) = S (23)
and the fla) spectrum is-achieved by the elimination of the parameter ¢
between

flg) = lim 9{%}) (24)
and

o{g) = lim O.(g.n) (25}

n—o Inl,
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©s(¢g.n) = Y pilg,n)Inpilg.n) (26)
and
O.(g.n)= Y pdgm)np™ . (27)

In Fig. 7 we show some examples of plots for P = 10 that allow us to
compute. by measuring the well defined inclination of the straight lines.
the f(g) and a{q) variables according to the above definitions. The f(a)
spectra for P = 10 at the critica! and at the AF attractor t.emperatur‘es are
shown in Fig. 8. A detailed analysis near the points where f{a} vanishes
shows that ﬁdif-} tends to infinity at these points for botlh temperatures,
as usually occurs in deterministic fractals. We can see that at the AF
attractor the f(a) spectrum is sharper reflecting the highe.r homogeneity
in the magnetization distribution. Similar spectra are obtained for other
values of P (P > 10).

We can compute exactly the lowest Holder exponent a,,, which is asso-

ciated with the set of the largest measures, given for large n. by

max {pir‘}} = —-—-C—— I"'::-Jﬁ (28)

ilmil "
where C is a constant independent of n, and af:fn is the lowest Holder

exponent at the n-level. The denominator 3, | m, | is related, as we will
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see in the next section, to the global order parameter of the system whose
critical exponent is, for P = 10, § = 0.98. ... Thus. we obtain at the critical

temperature i,

omnlte) =12 (29)

v
which for P = 10 gives the value 0.642. . ..

In the AF attractor we can assume the same behavior (Eq. (28}) for
the largest measures. The ratio between the largest measures at the two

diflerent temperatures {1, and {47 ) leads to

In (1+2;£'$ F=C4 E}l)

1+2(E.~2.))
In3

(30)

a’min(fﬁf) = Qmin(ic) +

which. for P = 10. leads to ap,.{t4r) = 0.747. . ..

The largest Holder exponent a,,, associated with the set of smallest
measures can also be calculated in an exact way at the critical tempersture.
The sites corresponding to the smallest measure at two subsequent levels
belong to different sublattices. The local maguetizations at these sites
follow a particular set of three recurrent equations which can be derived

from Egs. (15). Assuming that the smallest magnetizations m vy, and Al

marn
at the n-level vanish at the critical temperature neighborhood like (&1, )°*

(r)
min

_ b .
(where &t, = P==%) the set of recurrent equations for m

— furnishes the
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following equation for fay

[1 + 2a.y + (03 = bi)yzl{bc + {Ct(ac + b)) - dcbc]y] -

_Cc[(ac - bc)y2 - y]l(bf - az)y -(a. + bc)] = 0 (31) |

where y = rf»_ Therefore. from the critical behavior of m'™ and m
y ¢ min ») 2

we obtain that

ama.:'“c) = 1 + M
v

(32)

which. for P = 10. leads to the value of 1.250.... These exact results for
the limit Holder exponents are in excellent agreement with those obtained
by the direct computation of the f(a) spectra: the relative errors, for
P = 10. are 0.09%. 0.03% and 0.05% for amin(t.). Omin(tiF ) and Qmez(te)
respectively. These results exhibit the superiority of this method over the

box counting method for computing the f{a) spectrum.

5 Thermodynamical Quantities

Once we have calculated local average quantities, let us proceed in this

section to the derivation of the global macroscopic functions.
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5.1 Order Parameter

The ordering scheme suggested by MC simulations for the 3-state AF Potts
model on a bipartite Bravais lattice is the so called BSS which consists of
having predominance of one of the states on the sublattice A and of the
other two states distributed with equal ﬁl'obabilities on the sublattice B.
A global order parameter per site describing this type of ordering may be

defined [25,26,8] by

M o= ;,f—{| (600 0)) = T {6(0n 0)) | + | S (6ten1)) - S (6(0n1)) | +

iCA sCh ‘A 1B
+ | 2 (6(0,.2)) = D (8(04,2)) I} : _ (33)
WA W B

The sum over 1 C A (1 C B} refers to the sites at the sublattice A (B) and
N, 15 the total number of sites on the lattice. -
It is easy to show that Eq. (33) applied to the n-level of the HL reduces,

due to our symmetry-breaking condition. to

_D( i
MP) = 7\'*_”’ (34)
with
DP = Y my, =Y m,, (35)
1CA sW(C B
and
_ 2P 4P -9 )
“(Pj _
N = (55 —3) 6Py + 3P -1 (36)
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where NP is the number of sites at the n-level HL with P branches. Note
that the distinct order parameter proposed by Ono [13] reduces, in our case,
to (; = (3/4)M, and (; = 0 (see Defs. (4.1) of Ref. [13]).

Using the set of recurrent equations (15), one is able to show that DP

also follows a recurrence equation given by

D - D7, = Plaw = b0) [t -2 0 - D) o

(@r-3 — bu—] "

Iterating this equation one arrives at the following exact expression for the
order parameter per site as function of the temperature (implicit in the

parameters a and b)

P _ Ny (P) NP e 2N )
MP = | ) M o | M7 = (| M7 x

x ZP" (bl'_al)'ﬁlnz(b - a,)] ] (38)

1=2 =1
For a fixed point t* of the renormalization. and for large n, this expression

reduces {0

ppy = 282 = U - ) — o) (1 +2(b - a-))“ .

3[P(1 +2(b —a")) - 1] 3
where a” and b" are the coefficients a, and b, calculated at a fixed point ¢*.
Evaluating this expression at the fixed points we verify that lim, . MPH#PHy =

lim, .. M }(ffl’.—)) = 0, which proves the vanishing of the order parameter
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per site AP} for the whole range of temperatures, namely

M)t = lim MPH1) =0 <t<0, VP20 . (40)

In Fig. 9 we show, for P = 10. the behavior of the order parameter per site
MU% as function of temperature for diﬂérent levels of the HL. exhibiting
an abrupt decay as the level n increases.

Although M!®) vanishes in the thermodynamical limit for all tempera-
tures. let us show that it exists a non-null critical exponent 8F). First of
all. we verified (see, for P = 10, Fig. 10) that. for & fixed temperature T .
MIF: behaves as :

MENT) ~ A(T,P)L;HTP (41)

where L, = 3" is the linear size of the n-level HL with P branches, A(T, P}
is & fnite constant (which becomes 0.717... for T = T, and P = 10), and
6(T. P) is a temperature dependent exponent ({T.P) =2 0; 6(T,,10) =~
0.3537. 6(1,4r.10} ~ 0.253).

Besides that, we have also observed (see Fig. 11) that the infiexion point
T3P {where 8°M\P) /8T lT;-\r,: 0) approaches T¥) as n — oc according

1o

P P
lPJ_T( 1__'1'()

6T T{Pl

~ A"(P)L7¢P) (42)

where A7(10) = 0.413 and ((10) =~ 0.369 ~ (2.71)"". As the plot of Fig.
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11 refers to 9 < n < 17 and g)y; differs from /(19 by only 1.5%, we expect
that this discrepancy vanishes in the thermodynamical himit. A similar fact

happens for other values of P > 10 and we can consider that

(P) = =5 (43)

where 117} has the value obtained in Fig. 4 for the correlation length
critical exponent. TP} plays. therefore. the role of the rounding temper-
ature which appears in the finite size scaling theory (see. e.g., [27]) as the
temperature at which the plot of a given quantity for a finite size departs
significantly from the corresponding thermodynamical limit.

Combining expressions (41}. (42) and (43) we obtain the following asymp-

totic behavior for M}*) in the neighborhood of T, :

MPHT PNy ~ B(PYETPH (44)

where the numerical estimate for 5F) is
3P = PeTiH P) (45)

which gives for P = 10 the approximate value of 0.982. Combining Eq.
(44) with the recursive equation for D) (Eq. (37)) we obtain the following

exact value for gF)

R '
4P = .I_l..[.liﬂ:_’_ii (19 = 0.982...) (46}

ln L
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which agrees very well with the numerical estimate (Eq. (45)). In Fag. 4
we show the plot of the exact value of #F) as function of J}P’ . The asymp-

totic behavior of 8 in the neighborhood of d. is ) ~ [0.342...}(ds(P) ~

d,)0%7

5.2 Internal Energy and Specific Heat

The calculation of the internal energy of the n-leve] HL with P branches
involves, according to Eq. (1). the thermal average of §{(0,.0,} over all the
spins at the n-level. Since this average is the same for all bonds (Eq. (19)).
it follows that the dimensionless internal energy per bond at the n-level
Ef,: ! is given by

{(F} <Hr.P}}R.P - -
Ebn = 3 | J.,{P} | A{P} (6(61303))7‘}’ {47)

where N,ff Jis the number of bonds in the n-level HL with P branches. E’

satisfies (see Eq. (19)} the following recurrence equation :
EP =B 41 . (48)

Successive iterations of the above equation leads to the following exact

expression for the dimensionless internal energy per site in the fractal limit

E\P} = hm (HPNp (3P (Z 1, H €, _+.f°c) . ‘ (49)

— P P
"°‘3IJ5’|7\” & s
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The plots of E!F? as functions of temperature are shown. for P = 10 and
P = 27, in Fig. 12. Notice that, in the T — oc himit where all the
configurations are equiprobable, the asymptotic value of EiF) reduces to

the expected answer

: NP 1 3P _
Jim (8{0,.6,)w p (-?-\-.‘?) =§( 5P ) . (50)

The dimensionless specific heat per bond at the n-leve] HL with P

branches C,Ef ) defined by

w1 OH e
T 3kpNP) 0T

(51)

can be obtained by differentiating the recurrence for .E,EJ:

'(Eq. (48)). which
. . . P — . .
provides a recursive equation for Cf,ﬂ ) After successive iterations of this

equation we obtain the following expression for the dimensionless specific

heat per site in the fractal limit

(P)
CP) = Iim ! 5 O{H, n.p =
V= R e

& [ (B T o v ) o] J1 e

1=3 i=1 a=l41 k=141
Feo (Zf. Il &+ fu) + f;} (52)
=) =i+l
where
f=IJi|af'a .o:IJ:laf{ _=i )
«= -5 0 KETLer 0 CRI, (53)
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In Fig. 13 we show, for P = 10 and P = 27, the plots of the specific heat per
site as functions of temperature. The maximum of the specific heat occurs
at a temperature T!7) Jower than the critical temperature T4, A similar
behavior is found in the ¢ = 3 anisotropic Potts model with ferromagnetic
and antiferromagnetic interactions in the two respective directions of the
square lattice [28] (whose ground state degeneracy is infinite) and in the
F model of an antiferroeletric [29; {which exhibits an unconventional type
infinite-order transition).

Assuming a critical behavior for the energy in the neighborhood of the
critical temperature like EL ~ (6tP)171F} the recurrent equation (48) leads
to the following exact expression for the specific heat critical exponent a'F)

Ine, .
Inrifl (54)

aPl=1-6F1 =14

On the other hand. it follows from the definition of e!”) as function of ¢/

(see Eqs. {18) and {20)) and from: Eq. (3} that
riPt = 3pefP) (53)
Combining Eqgs. {1). {5). (54) and (55) we denive that
dy(PwFt=2_qa®P (56

which proves that the hyperscaling law for Bravais lattices continyes to

be valid (replacing the spatial dimension by the fractal one) for the whole
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family of HL’s considered herein. Such law has already been numerically
verified for the ferromagnetic Ising [30.16]) and Potts models [17] on # num-
ber of HL's.

Although there is no proof that the scaling laws valid for Bravais lattices
continue to hold for fractals. if we assume that the Rushbrooke scaling
relation (which, in fact. has been verified for the Ising ferromagnet on the
Wheatstone-bridge HL [31}) and the Fisher one are valid for the considered
family of HL's then one would obtain a value for the 4 critical exponent at ¢,
which is different from 1355.-) shown in Fig. 4. This would lead a discontinuity
of 17 at the critical temperature (for example, for P = 10. 5, >~ —0.38 and

NAF &= -0.51 )

5.3 Entropy

In order to calculate the entropy in an exact way. Jet us use another method
(see for example |32.) which is based on 'restricted partition functions

defined by

z =Tr {&am— 0;)é(oRp. 0¢) exp (—57'f‘r.P’(0))] (6o =0.1,2) (57)
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and

2. = Tr [8(ora.00)b(ors.01) exp (~BHPH0))] (00,0 = 0,1,2: 0 # 01)
(58}

The partition function Z!¥} at the n-level of the HL with P branches is.

thus. given by

2PV = 3Z 45 (24 A,) " (59)

with A, = Z};—T /Zf;-’,,. One can easily derive the following recurrent equa-

tions :
P
Z8n = 12500 B+ a4 28] (2l =1 (60}
2+6x + 2 1" )
Ayl = [3(1 T+ Ai_)] (Ao = exp(3J; "keT}) (61)

whose iteration leads to

lim
Ao .N,‘fj

InZFl @BP-1 & X+ A7)
nZ" _( . l)jz:hﬂ3(14- i+ A)] (62)

i=0 (3Py+

Eq. (62} allow us to derive the following exact expression for the dimen-

sionless entropy per site S/ in the fractal limit

SiP) (BP-1)& 1 |
1Plrmy e 1 % - ‘ 2.} _
SPAT) = Jim = = ;(3”“1 {In 301 + X+ 72)]
142,
-XAln X (m)} (63)

where S = kplin Z!P + Ta—"-’g-’:-}]. In Fig. 14 we show the behavior

of the entropy as function of temperature for P = 10: the plot of S} is
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indistinguishable from that of S0’ within the scale used in this figure. It is
worth pointing out thet the entropy is continuous at T,, as expected from
the absence of latent heat (due to the continuity of C{F) at TP as we
can see from Fig. 13) and from the continuity of the order parameter at
the critical temperature. This fact shows that the transition is continuous.

The residual entropy sg is :

=S5PNT =0)=

(3P - 1)Zln[3(1+,\,-+,\3)] (64)

& (3P)+)
and for P = 10 has the value 0.5496 . . ., which corresponds to approximately
50% of the entropy at the T — oc limit (S,(T = oc) = In3). Notice that
this is a relatively big value if we compare it with the ¢ = 3 AF Potts model

on the simple cubic lattice where s, ~ 0.345,(T — o) [2@]

6 Conclusions

We present an exactly soluble model defined in a family of diamond hi-
erarchical lattices which has an unusual phase like that one suggested by
Berker and Kadanoff for complex systems with non-zero residual entropy
per spin. In this phase. the pair correlation function decays algebraically
with a temperature independent n exponent. We calculate, in an exact

wa). the multifractal local magnetizations and & number of thermodynam-
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ical functions together with their corresponding critical exponents.

We prove that the order parameter vanishes for all range of tempera-
tures. We believe that the vanishing of the order parameter along the un-
usual phase is due mainly to the multiplicity of spin configurations which
generates a tendency towards equiprobability for the three states.

We also proved the hyperscaling law for the studied family of fractals.

As far as we know, there has been no report n the literature concerning :
i} exact calculations of any thermodynamical quantity along the mentioned
unusua! phase, in particular, of the order parameter: ii} the temperature
dependence of the f(a) spectrum characterizing the multifractality of the
local average magnetizations : the f{a) calculated at the critical tempera-
ture differs from that at the unusual phase; iii} the discontinuity at the
critica! temperature of the critical exponent n, which was derived assuming
that certain scaling laws continue to hold for this family of fracta) systems.

Finally, we would like to point out the found similarities and differences
between the studied system and the ferromagnetic XY model on the square
lattice (see. e.g., [33,34]). The similarities are : i) the algebraic decay of
correlations along the Jow-temperature phase; i1) the vanishing of the order
parameter; iii) the absence of divergence in the specific heat. The differ-

ences are : 1} in the XY mode! 5 varies continuously with the temperature,
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while in our family of systems, if the scaling laws are valid. 5 jumps to a dif-
ferent value at T}: ii) the correlation length £ diverges, as T, is approached
from above, as an exponential law in the XY model in contrast to the power
law obtained in the considered fractal family; iii) the peak of the specific
heat in the XY model occurs above the critical temperature. contrarily to
what happens in the studied family of systems. As the considered fractal
family is somewhat similar to the bidimensional XY model. it would be
interesting to look for a certain type of topological excitations. the vor-
tices, which at low temperatures occur for the XY model in tightly bound
pairs that unbind at the critical temperature. Although these vortices were
initially defined for a continuous spin model, Kolafa {35] extended them to
the 3-state Potts antiferromagnet. The search for these vortices in the con-
sidered family of HL's would require the use of another technique. like for
exampie Monte Carlo simulations. since the symmetry breaking condition
used in our recursive method does not allow us to distinguish the state 1
from the state 2.
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Figure Captions

e Figure 1: First steps of construction of the studied diamond type
HL with P = 10 branches. G, G'V) and G'® are the corresponding
graphs obtained at the respective levels n = 0. 1. 2. The sites of the
sublattice A (B) are represented by circles (squares) and. in particu-
lar. the oiaen circle (oper: square) is the root R4 (Rg). The broken

line at n = 2 indicates an arbitrary shortest path joining the roots.

» Figure 2: The renormalized transmissivities t' as functions of ¢ and
the corresponding flow diagrams for the studied HL with P = 9, 10
and 27 branches. The circle and the square stand for the unstable
(critical point} and stable (attractor) respective fixed points. By suc-
cesive iterations, an initial value +!) where —-1/2 < 1P} « #{P) and
P > P, =9.25... wil] converge to the attractor of the unusual phase

iPj

t4r- Another initial transmissivity #7 with /7! < ¢P) < 0 will

converge to the attractor of the paramagnetic phase t{¥) = 0.,

e Figure 3: The fixed points " at the critical temperature t{¥) (rep-
resented by triangles) and at the attractor temperature tf;} of the
unusual phase (represented by squares) as functions of the fractal di-

ILEension af‘fpj of the diamond type HL with P branches. The lines are
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guides for the eye.

Figure 4: The critical exponents of the correlation length /") (repre-
sented by small circles) and of the order parameter 3'7) (represented
by squares). as well as the correlation function exponent nf;;-] for the
whole unusual phase (represented by triangles) versus the fractal di-

mension df,m. The lines are guides for the eve.

Figure 5: (a) Pictorial representation of the graph G'™ correspond-
ing to the n level of the considered HL with P branches. G™) is the
union of the subgraph G'*) (whose edges are represented by broken
lines)., which contains the spins ¢, and o; created at the n-level and
the spins pu; and g, generated at previdus levels, and of the subgraph
G{;} which contains, besides y; and p,. the remaining spins includ-
ing the spin ogy at the root R4 (represented by ) which is fixed at

the state 0. In (b) GY" has been replaced by an effective graph GET;}

whose effective dimensionless Hamiltonian is given by Eq. (14).

Figure 6: The local magnetizations m{* and m!®! of the spins along
a shortest path between the roots R4 and Rg of the HL with P =10
branches at the n = 7 level versus the position 7. (a) and (b) were

calculated at the critical temperature T, and at the attractor temper-
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ature Tyr respectively. The positive magnetizations m{4! correspond
to spins belonging to the sublattice A and the negative ones m®

refer to those of the sublattice B.

¢ Figure 7: The respective sums ©;(g.n} and ©,(¢.n) defined in Eqs.
{26) and (27) versus the level n of the HL with P = 10 branches for
different values of g. These sums were calculated at T = T: similar

straight lines are obtained for T = T,F.

o Figure 8: The f({a) spectra at the cnitical temperature T, (repre-
sented by circles) and at the attractor temperature T4r (represented

by triangles) for P = 10. The lines are guides for the eye.

e Figure 9: The order parameter per site M{*% as function of temper-
ature for consecutive leveis n, 3 < n < 11, of the HL with P = 10
branches. 7119 and T2’ correspond, respectively. to the critical and

attractor temperatures in the n — oc limit.

e Figure 10: The logarithm of the order parameter per site M}!%
for the HL with P = 10 branches versus n calculated at T = T$%

{represented by points) and T = Tf;—]} (represented by triangles).

o Figure 11: The logarithm of the relative difference between the in-
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flexion point temperature of A% and the critical temperature T0%
versus n for the HL with P = 10 branches. The straight line corre-

sponds to the best square fitting.

Figure 12: The dimensionless internal energy per site E'P) of the
HL’s with P = 10 (full line) and P = 27 (broken line) branches as
functions of temperature. 7' and T{*") correspond to their respec-

tive critical temperatures.

Figure 13: The dimensionless specific heat per site C{F} of the HL’s
with P = 10 (full line) and P = 27 (brokern line) branches as functions

of temperature.

Figure 14: The dimensionless entropy per site SI¥) of the HL with
P = 10 branches {the curves for P = 10 and P = 27 are indistin-
guishable in the used scale) versus temperature. sE,P) is the residual

entropy per site (s9% ~ 0.3496 and .sé,m ~ (.5493) and In3 is the

expected asymptotic value for ST — oc).
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