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Abstract

We introduee a one-dimensional cellular antomaton as a prototype
for memory offects on dainage. The associated Hamming distance as a
function of time correctly mimies complex dynamical systems and for
different values of the external parameters, gradoally varies briween

a noise-like behavior and a plateaux-like one.

Key-words: Cellular automaton: Hamming distance: Memory effects:
Noise.
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A great amount of complex dynamica} systems present relevant quanti-
ties which behave. as functions of time, in a more or less noise-like manner.
Many electronic, optic, acoustic devices, meteorological phenomena. as well
as various theoretical models, exhibit such behavior. Among these models
we can include the discrete sandpile one [1] which presents self-organized
criticality. as well as other granular systems(e.g.. clogging in granular ma-
terial flowing in a pipe [2] or a continuous sandpile model [3]). Various
relevant quantities can be studied in such models. One of them is the
Hamming distance which characterizes a damage introduced in the system.
This type of situation is well illustrated on the discrete sandpile model:

the time evolution of a conveniently defined Hamming distance has been

recently stadied by Erzaon and Sinlin [4]. 1 presents n poise-like deprenedeyen
on time. excepting for the (surprising) presenec of ahrupt jugps between
plateaux (m-t; Fig. 1 of [4]). which indicate the existence of some type of
mewory. The purpose of the present work is to propose a simple prototype
- & one-dimensional deterministic cellular automaton - which can exhibit
such type of memory eflect, in a more or less distinet manner which can be
tunned through the external parameters.

Let us assume a semi-infinite linear chain of sites (1=0,1.2....) occupied
by binary Tall(]()lll variables {8} (S, = 0.1.Vi). We consider two cquiv-
alent replicas of the system ({S:} and {S§P}) constructed as follows. We

conventionally assume §) = 1{a=A.B). and then put S, equal to §? with
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probability p (hence different from S§° with probability {1-p)). Although
the value p is shared by both strips. the random sequences used to generate
the actual strips are different. We now focus on a window of length L and
define the following Hamming distance:

to+L

Hi=1 3 IS!-SP (m

= io

where i = Jt, J being a fixed positive integer pumber and “time” t=0.1.2... ..

H(t) will clearly fluctuate, and the fluctuations are expected to decrease for

inereasing L. In Fig. 1 we present two typical cases correspoding 1o L=30
(chosen. in this illustration. to coincide with the linesr size of the smple
used in [4]) aud p=0.9; cases (1) and (1) respectively correspond to siall
J (J=2) and large J (3=30). We verify that our Fig 1(a} is qualitatively
similar to Fig. 1 of [4), whereas the Fig. 1(b) just exhibits trivial fluctua-
tions. In Fig. 1(c) we have blown up a typical region of Fig. 1{b) in order
to show that it does got Jook like a rescaled version of Fig. 1(a).

Let us now guantitatively describe the H vs. t graph. If H(1+1) # H{1).
there is no plateau at time t (r = 0y if H(t+2) #£ H(t+1) = H(t),
we shall say that thereisa 7 = 1 plateau; if H(t 4+ 3) l-ﬁ H({t +2) =
H(t + 1) = H(t), we shall say that the plateau is a 7 = 2 one, etc. For
fixed (p.J,L), H(?) yields a distribution P(r) associated with the plateaux
(T2 P(r) = 1) M(p,J.L) = 1- P(0) is the probability of having
finite-size plateaux and, in some sense, plays the role of an order parameter.

We now present the average M(p. J, L) as obtained through simulations in
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which we have performed about 1000 experiments, each of which running
up to t =1000 {or ¢ =5000 in some cases): see Figs. 2 and 3 for typical
examples.

\We see that representing A \/J (instead of Af) vields a convenient data
collnpse. For fixed p, four differens regimes can be jdentified, nnmely
(i)J>~L=~1,;

(i) >L>1;
(i) J< J*(p)and L > 1:
(iv) *(p) < J < L,
where the crossover value J*(p} satisfies J'.(pJ = J(1-p) (e.g..J"(0.5) ~ 2.
J*(0.9) = J°(0.1) ~ 10 and J (1) = J*(0) =I o). Memory disap-
pears (i.e., M — 0), for any value of L and 0 < P < 1, whenever
J — oc. In the thermodynamic limit I — oc. only two regimes sub-
sist, namely regime (i) (J < J*( P)) where no scaling exists for M. and
regime (iv) (J > J*(p)) where M « 1/V/7. As intuitively expected,
J°(p) monotonously increases when p increases from 0.5 to 1; indeed. when
p approaches unity, memory persists for increasingly larger values of J. In
regime (iv). all transients have disappeared. and in Fig. 4 is. shown the
p-dependence of K'(p) = Yimy_ Limy _ . M(p. J.LWJ.

The analytical discussion of the p = 1 /2 case (full randomness) is
relatively simple in the limit L — oc. It suffices. for a jump of size J. to
consider the J. initial sites (yvielding 2’ different configurations) and the J

final sites (yielding 27 different configurations); indeed, the configurations
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of the (L - 2J7) iuternnl siter do not contribute for M. So, the sunlysis of

these 27,20 = ¢4 configirations leads to

zfma (i’ )z

M05.J o) = " (2)
henee
(¥)
M(0.5.J, ) = et (3)

The use of Stirling’s formula mmmediately yields. in the J — oc limit,

M(0.5,J,0c) ~ % | (4)

hence

K(03)= Jim M(05.J.00)V7 = 2= (5)

thus confiming the numerical result indicated in F 1g. 4.

Let us conclude by recalling that a possibly large class of systems ex-
hibiting memory effects in the time evolution of a damage, might belong to
the same ‘universality class’ as that of the prototype we have herein intro-
duced. And in any case. it seems to be so for the discrete sandpile model
recently studied by Erzan and Sinha. As further developments, it could be
interesting to study the momenta of P(r){eg.<1t>= TX,7P(1)), as

well as d-dimensional versions of the present model.

We acknowledge interesting remnrks fron A.Erzsn and B.J. Herrmnm.
F.T. and A M.C.S have been respeetively supported by CNPqy and CAPES

(Brazilian Agencies),
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Caption for figures

Figure 1: Time evolution of the Hamming distance for =09 #and L =30
(8) J = 2 (plateany exist); (b) J = 30 (platenux do not exist ), (r)

blow-up of a typical region of (b).

Figure 2: (J,L)-dependence of M7 for p = 0.5 :(a) full diagram; (b) fixed

J cuts; (c) fixed L cuts.

Figure 3: (J,L)-dependence of MV/J for p = 0.9: (a) full diagram: (b} fixed

J cuts; (¢) fixed L cuts.

Figure 4: p-dependence of I = limy_.. M(p,J,5c)V/7.
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