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ABSTRACT

A general sufficient condition is glven for unions of closed sets to be
closed and intersections of open sets to be open. Examples of appllcatlons
are offered.
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Among the defining features of a topological space X we have that the union
of a finite family of closed subsets of X is closed in X and that the intersection
of a finite family of open subsets of X is open in X. These properties no longer
remain valid if finite is dropped. They may remain true if additional conditions
are assumed in place of finiteness. One of the simplest generalizations of a finite
set is the concept of a compact space (for convenience a compact space here is
not necessarily a Hausdorff space). To discover how to reach the goal of replacing
finiteness by compactness aimed at the title of this text, let (Fi)aea be a family
of closed subsets of X. Assume that we have fixed a compact topology on A.
Every set A may be given some (even Hausdorff) compact topology. It will not
follow from this mere assumption that the union {J, ¢, F is necessarily closed
in X. To research a sufficient condition implying that such a union is indeed |
closed in X, let us assume for simplicity that X and A are metrizable spaces (as -
then we may use sequential reasoning). If a belongs to the closure of | )¢, Fa
in X, there are A, € A and a, € F), (n € N) such that a, — a (because X
is metrizable). By passing to subsequences, we may assume that thereis g € A
such that A\, — u (since A is metrizable and compact). Conversely, if there are
Am€EAp€eAa€eX anda, € F5, (n € N)such that a, = a and A, — g,
then a belongs to the closure of { J ¢, Fa in X. A natural sufficient condition
that will allow us to conclude that, then a belongs to | Jygx Fi (hence that this
union is closed in X is the following: whenever A, € A, ¢ € A,a € X and
an € F5, (n € N) are such that a, — a and A\, — py, then it follows that
a € F, (hence a € |J, ¢, F2)- Such a sufficient condition is clearly equivalent to

requiring that the subset {(z,A) € X xA;z € Fy} be closed in X x A. In this new
(non-sequential) formulation that sufficient condition is meaningful whether X
and A are metrizable or not. We are thus led naturally to conjecture Proposition
2 below. Actually, the preceding motivation is a proof of Proposition 2 when X
and A are metrizable (and the proof by filters of Proposition 2 is a translation

of the preceding sequential proof to the general case).
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DEFINITION 1. The subset of X X A

G={(zNeXxAzeR)=JFrx]A)
: AEA '

is called the graph of the family (F))aea in X x A. The complement (X xA)—G
is the graph of the family of complements (X — F)aea in X X A.

PROPOSITION 2. (Compact unions of closed subsets are closed.) Let X be a
topological space, A be a compact space and (Fx)aeca be a family of subsets of

X. Assume that the graph G of this family is closed in X x A. Then | Jyga Fa
is closed in X. '

PROOF BY COVERS: Assume that a € X and a € [ J,¢x Fa. Then (¢,1) ¢ G for
every A € A. There are a neighborhood U of a in X and an open neighborhood
V of X in A such that (U x V)N G = ¢ for every A € A. We then get an open
cover of A. Since A is compact, we may extract a finite subcover of A of that
cover and consider the finite intersection U of the corresponding neighborhoods
of a in X. We then get a neighborhood U of a in X such that (U x A)NG = ¢.
Then U N (| yea FA) = ¢. It follows that a does not belong to the closure of
Usea Fa in X. Hence | 55 F is closed in X. QED

PROOF BY FILTERS: Assume that @ € X belongs to the closure of | J,¢p Fa
in X. For every neighborhood U of @ in X, there is some A € A such that
U N Fy # ¢ and thus Ay = {) € A;U N Fy # ¢} is nonvoid. The subsets Ay as
U varies over the filter of all neighborhoods of a in X form a base for a filter ¢

in A. By compactness of A, there is some u € A such that every neighborhood
of u in A meets all sets in &. Therefore (a, ) belongs to the closure of G in
X x A. Hence (a,u) € G and a € F, C |Jyep Fr- Therefore, | Jyep F is closed
in X. QED

PROPOSITION 3. (Compact intersections of open subsets are open.) Let X be a
topological space, A be a compact space and (Ga)rea be a family of subsets of
X. Assume that the graph G of this family is open in X x A. Then (¢, Ga is

open in X,
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PROOF: Propositions 2 and 3 are dual and equivalent by complementation. Once
we are in the situ'ation of Proposition 3, let F be the complement X —GA(A € A).
The graph of (Fi)aea in X X A is the complement (X x A) — G and hence it is
closed in X x A. The assumptions in Proposition 3 lead to those in Proposition
2. We conclude that | Jyc, F is closed in X. By complementation we get that
MNxes G» is open in X. Thus Proposition 2 implies Proposition 3 (and a similar

reasoning in the reversed order proves the converse implication). QED

Remark 4. We did not assume in Proposition 2 that the F)(A € A) are closed
in X. This is true as a consequence of the fact that G is closed in X x A. In fact,
FaxACFxACG=Gforany A€ A. Hence FAxAC Faxdand FA C Fy
showing that F) is closed in X for any A € A. A similar remark applies to
Proposition 3. See more generally Remark 8 (here I* is reduced to one element).

COROLLARY 5. Let X bea topolog'ical space and ¥ be a collection of subsets
of X. Assume that we have a compact topology on F and that the graph
{(z,F)€ X x F; z € F} is closed in X x.F. Then | ) F is closed in X.

COROLLARY 6. Let X be a topological space and § be a collection of subsets
of X. Assume that we have a compact topology on G and that the graph
{(z,G)€ X xG; z € G} is openin X x G. Then (G is open in X.

Remark 7. Corollary § follows from Proposition 2 by taking A = Fand F, = F
if A = F € F = A. Conversely, Corollary 5 implies Proposition 2 by letting F be
the image set of the mapping A € A — F) € 2% and by using on F the compact

quotient topology (via this mapping) of the compact topology on A. A similar
remark applies to Corollary 6 and Proposition 3.

Remark 8. Let the assumptions be those of Proposition 2. IfI" C A is compact,
then the subfamily (F,)yer whose graph in X x I' is the intersection of X x I’
with the graph of (Fa)aea is closed in X x I In applying Proposition 2, we
see that the sufficient condition for (F))aea implies the sufficient condition for
(Fy)yer- Dually for Proposition 3.
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Example 8. Let X,Y be topological spaces and f : X — Y be a mapping
whose graph G = {(z, f(z));z € X} is closed in X x Y. Then f is continuous if
Y is compact. In fact, we claim that f~}(F) is closed in X for every F closed
in Y. To prove this claim via Proposition 2, take A = F and F) = f~1(}) for
every A € A. Next notice that the graph in X x A of the family (F3)aea is the
intersection (X x A)N G which is closed in X x A. Give A the compact topology
induced by Y. Apply Proposition 2 to conclude that ()¢, Fa = f~(F) s closed
in X.

Example 10. Let X be a topological group, A be closed in X and B be compact
in X. We claim that AB is closed in X (and likewise BA is closed in X). We have
AB = |J,cp(4y). To apply Proposition 2, take A = B and F = AMA € A). We
assert that the graph G = {(z,)) € XxA;:E € F.} = {(z,y) € XxB;zy~t € A}
of the family (Fi)aea is closed in X x A. In fact, G is the inverse image of the
closed subset A of X by the continuous mapping (z,y)) € X x B— zy™! € X.
Therefore, Proposition 2 gives that | J,c, FA» = AB is closed in X,

Example 11. Let X be a topological space which is also an ordered set such
that the graph G = {(z,y) € X?;z < y} of the order on X is closed in X2, For

every A C X consider its decreasing hull d(A) in X, which is the set of all z € X
such that z < y for some y € A. We claim that d(A) is closed in X for every A
compact in X. We have d(A4) = U,c4 d(y). To apply Proposition 2, take A = A
and Fy = d(A) (A € A). The graph {(z,A\) e X x A;z € \} = (X x A)NG
of the family (Fi)aea is clearly closed in X x A. Therefore, Proposition 2 gives
that |,y Fx = d(A) is closed in X. Dually for the increasing hull i(A4) in X.

Example 12. Let X be a Hausdorff topological vector space over the field K
(namely Ror C), n > 1 and m = 0,...,n be fixed integers. Use the notation
A=A, M) EK® 2 =(21,...,25) € X" and Az = M2y + - + Az, € X
Denote by F2 the subset of X™ of all 2 € X" such that the vector subspace
generated by z3,..., %, in X has dimension at most equal to n—m. Equivalently,
Fyr, is the subset of X" of all z € X" such that the vector subspace of K* of
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all A € K® satisfying Az = 0 has dimension at least equal to m. Let G?, be
the complement of Ff in X®. We have F{* = X, F? =0, F3 D Fh (m =
0,...,n — 1) and F}* is the set of all 2 € X" such that x,,...,z, are linearly
dependent. Moreover, G§ = ¢, G = X* -0, Gy, C G2, 1 (m = 0,...,n—1)
and G7 is the set of all £ € X™® such that z,,...,z, are linearly independent.
We claim that F? is closed in X" and equivalently that G% is open in X™.
To prove this claim we may assume that m > 1. Fix a scalar product on K".
Denote by A the sphere of center 0 and radius 1 for that scalar product. It
is a compact subset of K". Let A,, be the compact subset of A™ formed by
all A = (A%,...,A™) € A™ such that Al,...,A™ € A are pairwise orthogonal.
Use the notation Az = (Alz,...,A™z) € X" if A = (A1,...,A™) € (K*)™ and
z € X®, Set F) = { € X";Az = 0}(X € Ap). Notice that F% = |J,ep,. Fa-

To apply Proposition 2 in establishing that F is closed in X®, notice that the
| graph {(z,)) € X" X An;z € Fi} of the family (F)\)xea,, is closed in X™ X A,.
In fact that graph is the set of points of X® x A,, where the continuous mapping
(z,X) € X® x A, v Az € X™ vanishes. Therefore, Proposition 2 implies that
Usea, Fa = Fp isclosed in X™.

Proposition 14 below is equivalent to Proposition 2. Hence Proposition 14

subsumes all the preceding examples (see Remark 15).

DEFINITION 13. Let X and Y be sets. A binary relation between X and Y
is a subset R of X x Y. We also call R the graph of that binary relation.
We write zRy to denote that (z,y) € R. The inverse binary relation R™!
between Y and X is defined by (y,z) € R™! if and only if (z,y) € R. Hence,
yR™! is equivalent to zRy. Clearly R™! is the image of R by the bijection
(z,0) € X xY & (y,x) €Y x X. Hence (R™!)~! = R. The direct image R(A)
of AC X by R is the set of all y € Y such that there is some x € A for which
zRy. The inverse image R~1(B) of B C Y by R is the set of all z € X such

A
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that there is some y € B for which zRy. Hence R™Y(B) is also the direct image
of BCY by R™'. We have R(A) =), R(z) and R~1(B) = Uyes B71(y)-
Assume that X and Y are topological spaces. We say that R is closed when R
is 8 closed subset of X x Y. Hence R is closed if and only if R™! is closed.

PROPOSITION 14. Let X and Y be topological spaces, and R be a closed binary
relation between X and Y. Then R(A) is closed in Y for every A compact in X
and R™1(B) is closed in X for every B compact inY.

PROOF: The two parts of the claim in this proposition are equivalent by in-
version. Let us prove the second part. To apply Proposition 2, take A = B
and Fx = R7}()) (A € A). We have R™!(B) = J,c4 Fr.  The graph
{(z,)) € X xA;z € Fa} = (X x A)N R of the family (Fi)aea is closed in X x A.
. Therefore, R™1(B) is closed in X by Proposition 2 as wanted. Proposition 14
implies Proposition 2 by taking Y’ = A and by using the graph G of Proposition 2
8s the binary relation between X and Y. The two proofs we gave for Proposition

2 have corresponding direct proofs of Proposition 14. QED

Remark 15. We get Example 9 from Proposition 14 by defining the binary
relation between X and Y whose graph is the graph of f. We get Example

10 from Proposition 14 by defining the binary relation R between X and X as
follows: we set xRy if 2 € X, y € X and zy™! € A. We get Example 11 from
Proposition 14 by defining the binary relation between X and X as the order
relation on X. We get Example 12 from Proposition 14 by defining the binary
relation R between X™ and A,, as follows: we set zRAifz € X", A € A, and
Ar = 0.

Another important example is provided by the following result.
PROPOSITION 16. Let X,Y and A be topological spaces where A is compact.

Consider a family of mappings f) : X — Y(A € A) such that the joint mapping
(z,2) € X x A v fi(z) € Y is continuous (in particular every fy : X = Y is
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continuous for A € A). Then (J,¢, fi*(F) is closed in X for every F closed in
Y and {\,ca f5!(G) is open in X for every G open in Y.

PROOF: To apply Proposition 2 we set F), = f1(F)\ € A). Notice that the
graph {(z,)) € X x A;z € F)\} = {(z,)) € X x A; fa(z) € F} of the family
(Fa)aea is the inverse image of the closed subset F' of Y by the continuous
mapping (z,A) € X x A — fy(z) € Y. Hence this graph is closed in X x A.
Proposition 2 implies that | Jy¢, f31(F) is closed in X. By complementation,
we get that (¢, fi1(G) is open in X. QED

COROLLARY 17. Let X,Y be topological spaces and F be a set of mappings from
X toY. Let F be endowed with a compact topology such that the mapping
" (x,f) € X X F v f(z) € Y is continuous (in particular, every f € F is
continuous). Then |J;ex f~'(F) is closed in X for every F closed in Y and
MNyer F1(G) is open in X for every G open in Y,

Remark 18. As in Remark 7, we get Corollary 17 from Proposition 16 and
conversely Corollary 17 implies Proposition 16.

Remark 19. In the spirit of Proposition 3 we can give a sufficient condition for a

compact intersection of a family of neighborhoods of a point to be a neighborhood
of that point. Equicontinuity in the Ascoli Theorem and the Banach-Steinhaus
Theorem, deals with an intersection of a family of neighborhoods of a point being

a neighborhood of that point but in a fashion different from the one treated here.




