ISSN 0029-3865

CBPF-NF-039/90
SPINNING FLUIDS IN GENERAL RELATIVITY: A VARIATIONAL FORMULATION

by

H.P. de OLIVEIRA* and J.M, SALIM

Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150
22290 - Rio de Janeiro, RJ - Brasil

*Universidade do Estado do Rio de Janeiro
Instituto de Fisica '
Rua Sao Francisco Xavier, 524
20.271 - Rio de Janeiro, RJ - Brasil



CBPF-NF-039/90

ABSTRACT

In this paper we present a variational formulation for spinning
fluids in General Relativity. In our model each volume element of
the fluid has rigid microstructure. We deduce a symmetrical ener-
gy-moment tensor where there is an explicit contribution of kinetic

spin energy to the total energy.

Key-words: Spin; Variational formulation; Rigid microstructure.
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1 INTRODUCTION

The variational formulations to describe relativisfic fluids
with internal spin has received a lot of attention by many authors
in special.relativity and in relativistic theories of gravitation
{(general relativity and Einstein-Cartan theory)Equ. 'The more
notable were the generalizations offkdhwxhs':tgj treatment of
spinning fluids made by Ray and Smatl'].eyl:-l’z:l and by Obukhov and
I'Koro1lzky|:-3:l . ‘The model in the ref.fl:z_:l ig different from the ori
ginal Weyssenhoff fluidl:a:[ , while in the Obukhov's work it's -shown
that, after some refinement and generalization of the Ray and Smalley
action, it's possible to obtain a lagrangean theory to describe the
Weyssenhoff spinning fluid., In this work we propose a lagrangean
that differs a little from those already mentioned. The basic
distinction is in the way we introduce the spin kinetic energy den—-
sity and the Gibbs equation used to describe thermodynamical prop
erties of the fluid. In the model we have introduced a symmetric

B

second-order tensor J°© that generalise the notion of rotational
inertia. This tensor is used to express .the condition of rigid
microstructure of the fluid [10'11’111.@hat is adopted here. These
notions can be found in Maugin's works Ell’IZJ and in references
therein. 1In orde; to generalize this scenario  to general relati
vity we add the'gravitational lagrangean density and couple .ﬁhe

gravitational field minimally with the continuous media in consi-

deration.

The structure of the paper is as follows. In the. second sec-
tion we present the basic results of the description of a simple
fluid with rigid microstructure and give the Lagrangean of such

fluid. We also discuss the question of including the spin tensor
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like a thermodynamical variable. In the third section we obtain
the gravitational field equations and its source, the energy -mo-
mentum tensor of the fluid. This tensor coincide with the pheno-
menoclogical energy-momentum tensor obtained by Maugin Eli] when
dissipation and eletromagnetic field are absent. The = important
fact with consequences on the dynamics of the gravitational field
in cosmology and astrophysics is the enlarged tctal energy densi
ty o now including the kinetic energy of the fluid. Finally, in
the conclugion we discuss some of generic conseguences of the theo-

ry obtained.

2 RELATIVISTIC FLUIDS WITH RIGID MICROSTRUCTURE: VARTATTONAL PRIN-
CIPLE

Let's introduce an orthonormal tetrad of vecuns.euoubd, where,
in our notation, A =0,1,2,3 label the tetrad vectors and u=0,1,2,3
label the components. As usual these vectors satisfy:

(4)

e ey T v (2.1)

(A) Ju(B) _  AB (2.2)
" _

e

where guu is the spacetime metric and i3 is the Minkowski metric

diag(+1,-1,-1,-1). The following choice for the vector e(o)u is

done:

U
(o) _ "u
e u o (2.3)
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where Uu is the hydrodynamical field of velocity of the fluid and

¢ is the light velocity.

The angular velocity of the spin, ﬁae,iis given by.Ellj

§ o i

af Ta %81 (a) (2.4)

In this expression the bracket indicates the usual antissimetriza

tion and the dot denotes differentiation along the fluid flow

<(A) _ O (4)
e n = U Vae u (2.5)

The decomposition of EGB in terms of its irredutibles parts has

the form

. 2. ‘
QaB = szas + > U[a UB] | (2.6)

B_
with QGB u"=0

The spin tensor of fluid is related to angular velocity by:

sef = 2 gMleghly 2.7
where 3"V = V" ig the rotational inertia tensor and satisfy the
relation

My =0 (2.8)

The expression (2.7) can be write in the vector form as:
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s% = goB 2 (2.9)

with the axials vectors S® and.ﬂB defined in the usual way using
the skew-symmetric tensor naBﬁvf

The rotational inertia tensor is conserved along the fluid flow
(JQB eéA) eén)) = (JAB) = 0 (2.10)

traducing the rigidity of the structured microscopic constituents

of the fluid. Finally, we write the density of kinetic energy of

rotation:
_ 1 af _1 LMo B 2Ll ki M o s *(3)
Pg 3 n S QGB"Z nd . uQaB +z-nJ e(k)e(j)ea(i)e u
(2.11) -

where n is particle density number.

With all this elements we c¢an now write the following Lagran-

gean density for the spinning fluid as:

- k:l. & (J) o
£f = - /=g [F(n,s) +'4' ng (k) a(z) (et al) 4+
a o oH oy
+A,U70 8+ AU X f'" (gw (4)© (B) ~n,5] (2.12)

In this expression s is the entropy per particle, F(n,s) 'is :the
usual energy density of the fluid, X the particle identity varia-
ble and ll' 12,\A3, lAB are lagrange multipliers associated with
the various constraints. The energy density can be write in terms

of the internal energy density, ne, and the mass density of cons-
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tituents as
F(n,s) = nlac?+e) = p (2.13)

Before going to the varliations with respect to the field varja-
bles we would like to call attention that our lagrangean is very
similar to the others already mentioned in the Irrtroductionl:l’z’3’6’7:|.
The distinct points are the introduction of rotational inertia ten-
gor and the form of density kinetic energy given bf [2.11). In
our apprcach we don't use any particular relation to orient the

axial vector 8% as colinear to any e&A)

s neither the spin density
tensor S{356 is considered a independent variable. Starting of field
theory definition of spin density tensor and applying to the la-

grangean (2.12) we have

- % o - |
g NS, % @ (p(a) aé%l; S 0 d [qQB 1 i (2.14)
a

that is in agreement with our earlier definition given by (2.7).
The final remark is the fact of not considering SaB_ds a thermody
namical variable. Thisg is consistent with the theory of polar.
fluidstyﬂ] , and due to the mechanical character of the spin ten-

8

sor s% y that wouldn't contribute to the thermodynamical state of

the system.

Now, we outline the results of varying the lagrangean density
(2.12) with respect to the field variables Xl, Az, 13 a"i}ﬁx'ﬁhese

variations lead to the following equations:

Va(nUa) =0 (2.15)
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-6=
s =0 (2.16)
X=0 A2,17)
TR -
Iuv®aree - Map = 0 (2.18)

Those equations express, reépectively, the conservation of the mum-
ber particle, the conservation of entropy per particle, the con-
servation of particle identity and the condition of orthonormali-
zation of the tetrads. Next, we present the equationsg caming from

variations with respect to the n, s, X, u’ and e}a), respectively:

s _9F .1 k1 al -(J)
T YT @ (2.19)
EE - My o
- v, (0% =0 (2.20)
u -
v, =0 (2.21)
1 gkin ( ) (i)
vy ndJd (k) a( ) Vve(l) (J)Vve ) + llavn.+
B
0
+ lzavs +2'Ef ev(B) + Asavx - av(nll) = 0 . (2.22)
1 ka B ¢ « (3) Aa _ 1 ki 2(a)
7030 et B ey m 3 T (e e )8y ) 0

(2.23)

where i, j, k, a =1, 2, 3.

The equations (2.22) and (2.23) can be used to obtain the ex-
plicit form of multipliers A%, A°! and A%P. Then, contracting

(2.22) with U and in view of (2.15)-(2.19), we get
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- 1
22 'I n *ig

oo (1) :
e'ti) Ca(i) Sy ey (2-20)

Now contracting (2.23) with U' one obtain:

a, 1 ki oM '(a) ka? M2
2) 7= 5= n nu® g e (i) (k)® —3Te L ) (k) & ) (2.25)

In order to determine Aab we contract (2.23) with eT(a) and ob-

tain:

1 ka u ¢ '(J) T(b) ab _1 ki T(b) '(a).' =

-sz e(k) T()]J + 2X sz e(k) T(l) ]-1 =0
(2.26)

By symmetrization and antisymmetrization of this equation in indi

ces a, b, we get respectively

ab _ 1 ki (()[g (@ T u kK(a (b)) u o1 2(3)
2277 =gz nde; ®u 1)) "ZDJ ®1 e(k)e( ) S
(2.27)
_ ckla (B))  w ost _eti) _ ki [(b) e €2) M ’-
0 J e e(k)e(j)el‘l J " e 1 1% () ()
_ (2.28)

The equation (2.28) is nothing else than the dynamical equa-
tion of the spin angular momentum:

sba

S bj

+ si® n"j+ s"d g%, = 0 (2.29)
Using the equation {2.6) in a convenient way, the above equation

can be write as
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-8-
o~ B I R | )
. oud - Gw -
§oB ¢ o M _gBuT B . (2.30)"
c? et -

B

telling us that the spin tensor s** is Fermi transported along of the

world-line of each element of fluid.

3 GRAVITATIONAL FIELD BQUATIONS FOR A SPINNING FLUID IN GENERAL RE
LATIVITY

The total lagrangean density that describe the perfect fluid

with gravitational interaction is given by:

where R is the 'scalar curvature, X =§E§ and G ls the gravitational
' c

constant. Thé variation of the action obtained with this lagran-

gean density with respect to guv gives the following_equations:

oWt sF 1 kin o o

ot _ _ p ot A ) G
G ==X [g {F(nls) n 'a‘ﬁ ) + "c‘-‘_z n '5?1' z nJ e]‘(lk)ea(i)e(j )e.u
- 29 (ns" 90Ty + B g gH (TP ] (3.2)

o]

In view of equations 12.11), (2.13) and the Gibbs equation
= 2l
Tds = de + pd(H) (3.3)

we can rewrite (3.2) in the more familiar form
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gT _ _.. 1 af, | UUﬁT _ .GT ;_ ﬁ(a-f)
G " = x[?p +3 08 QGB) e ph 2Vp(n$ U “) +
+ &g s“("u")] o (3.4)
c? H '
or _u%p’

In this equation ho? =g

> is the projector, p is the thermo
c
dynamical pressure and the parentheses around the indices mean sym

_1
metrization, A(dr) _T(AUT+ATU)'

The source of the_gravitational field can be separated in two

parts: a perfect fluid energy-momentum tensor, TUT, and the spin

f
energy-momentum tensor TgT as follows:
Oy T '
TgT =p 4] U - phUT {3.5)
2 _
¢
ot 1 ap, u%" . u{o,1) 2n & u(c,T)
T ' = 3 ns’'R — -~ 2y (ns¥"'\%t )+ g G (3.6)
8 a c? 'y . ., ¢ M

The distinction between the tensor we obtain and .those  ob-
tained by Ray and Smalley[l’z:| and Obhukov and I(<:>x.'r.>tky[:-3:I .is the
presence of the kinetic energy density in our model. Such result
express the fact that a commoving observer with an arbitrary volu
me element of the fluid perceive its rest energy, internal ener-
gy and its internal rotating energy. The new enefgy contribution
can change the dynamics of usuals cosmological models with a spin-
ning perfect fluid as source. We also emphasize that the tensor
9T =TET +TgT is the same derived by Mz:mgj.n[-]“zj from a phenomeno-

logical approach when the fluid is in thermodynamical equilibrium

and there is no electromagnetic interaction.

As a concluding remark we write the conservation laws of ener

gy and momentum. So, from Einstein's equations and Bianchi's i-
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dentities we have:

O T
a8 U U _ oT _2n ua T
T[n(ac +e +-§ s naB) ph +c Uus 4] ] +

+nr%, sMuf -0 (3.7)

Buv
The coupling between the curvature and the spin is know as Mathis
son-Papapetron force. Projecting eguation (3.7) parallel and per

pendicular te " we obtain respectively:

afi +nft) ] - o | (3.8
2n SHY - L g CamCRT 0 @VHEB

In deducting equations {3.8) and {3.9) we use the balance law of

aBn

spin kinetic energy I:]'l:l %n {s U-B).=0° The spatial tensor Jcr)\

that is given by:

J [a+c (& *'i s“Bn s 2171 +-..2.; (ém)l (3.10)

agX c

can be interpreted as a generalization of inertia (see ref. 12).
The second derivative U" is an usual phenomenon of self interac-
tion, so we need three initial conditions to specify a unique so-

lution of the equation even in flat space-time.
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4 CONCLUSIONS

In this work we present a variational formulation for spinning
pexfect fluid whefe each element volume is considered to have ri-
gid microstructure, The energy-momentum tensor is derived and we
note the explicit contribution of the spin kinetic energy to the
total energy. As stressed in text, our treatment is distinct of
another formulationsrl’z’s’dj: ﬁe not "tie" the spin density vec-
tor to the third axis of tﬂe tetrads, neither consider independents
variations of Si. and e%i)_. 'By' the contrary we use a well established.

relation between the spin density tensor and the spin angular ve-

locity E 1 2:] .

The next step is to apply the results of this paper in cosmo-
logical models as well in astrophysics. 1In the first case, the -
galaxies (or clusters) would be the spinnings particles of the
fluid, and in the second, localizated spinning fluids distributions
with spherical and cylindrical symmetries are subjects of interest.
In the mentioned problems, besides the usual equations (Einstein's
equations, conservations laws of energy-momentum), it will be ne-
cessary to take into account eduations.of balance of spin angular

momentum and spin kinetic energy. The last is given by[:ll;a
aBys -1 af * = :
nQ,gls ) L=3mn(77a,,) =0 : (4.1)

Some final remarks are important to emphasize. In our theory
the Gibbs equations is maintained in its original form, that is,
spin density tensor isn't considered a thermeodynamical variable.

In this way, we don't need to impose certain "consistency rela-
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tion.es"Es:I that are lacking of precise physical meaning, and can
be vicolated in general case. Finally, the Qresent theory is in
agreement with the phenomenological approach done by MauginElé].
if we consider the case of thermodynamical equilibrium and ab-

sence of electromagnetic interaction.
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