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ABSTRACT

Within a real space rendrmalisation group approach, we study
the phase diagram and the universality classes of the three-state
chiral clock model in a self-dual planar hierarchical lattice.

We find that the chiral field A is releﬁant at the pure Potts
critical point w%th a crossover exponent ¢ A 0.32. The critical
line which separates the ferromagnetic phase from the non-ferro-
magnetic ones is‘characterized-by.a multicritical (Lifshitz) point
located at (K,8) »~ (1.452,0.382). The ferromagnetic ' phase
appears to be divided into two regions by a wetting line which
' we also locate mmerically. The various critical:-lines and point’ of  the
phase diagram are believed to be excellent approximations for

the square lattice.

Key-words: Chiral. clock model;Criticalify; Renormalisation group;

Lifshitz point.
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1 INTRODUCTION

Since the first observations of modulated structures in fer-
roeletric and magnetic materials at the end of the fifties and
beginning of sixties C1] + a great interest has grown in studig sta~’
tistical models which might exihibit such modulations. From the
theoretical point of view, two models are basically studied, name
ly, the axial next-nearest neighbour TIsing (ANNNI) model and tha -
chiral clock model (sometimes referred to as "asymmetric. clock“;
"chiral Potts" and "helical Potts" model). The Hamiltonians of
botﬁ models contain competingiinteractions which give ﬁise to
.spatially modulated stmictures. "In the chiral plock model - the
competition is provided by.chi;al.or helical interactions along a
given lattice axis, while in the ANNNI model it is a nearest-neigh.
bour ferromagnetic coupling bompeting-with_a next-nearest-neighbour
antiferrumagnetic one along one lattice direction which causes the modilations.
For a survey of the present state of the art on these two models the reader
is referred to the recent reviews by Yeomans Ez] -and by_SelkeEa:| .

" The chiral clock model can. serve as a.prototype for the melt-
ing of a commensurate adsorbed phase[ZAJ;Jis experimental ;reali—.
zation in two dimensions is prbvided by dissociated hydrogen on’
Fe (110) ES] No similar physical ‘system is known to. be described
by this model in threé dimensions. We focus in the present paper
on the controveisial two-dimensional,thfee—state chiral claéck
model. At d=2.it might show a floating incommensarate phase
above the low-temperature commensurate phases I:G’?’BJ. However, a
conéiderable CQntrbversy remains over whether there is a Lifshitz—

type multicritical point or whether the floating phase extends
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down to a vanishing éhiral field &E?,B,B 10, 11] Huse and
EisherE 1] suggest a Lifshitz point which governs the trangi-
tion from the ordered (ferromagnetic) rhase to the disordered
(paramagnetic) one for b such that 0 < A < a,. The present re-
sults give support to this possibillty,

Here we study the two-dimensional, three-state chiral .clock
(ferromagnetic) model in a high-order: Wheatstone-bridge ‘hi-
erarchical lattice within a real space renormaliéation group (RG)
framework which preserves the two-site‘correlation function.
The central goal of this work is.to‘investigate whether chirali
ty introduces a new universa;ity class (as suggested by ﬁuée
and Fisher) as well as to nﬁme;ically determine various critical
“lines and points. The present results afe exact for the hdéra;
chical laEtigeq and appfo#imate for the séuare lattice (the ap-
prbximation being however excellent for the phase diagram). ‘

In section 2 we present the ﬁodel and the RG formalism; in
section 3 the results are discussed; finélly-we conclide in

section 4.

2 MODEL AND FORMALISM

The g-state chiral clock model is described by the Hamilto-

nian

Jf =-% 7 cosl:%g(rii—nj+3.'ﬁij)] (2.1)

<ilj>
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where the sum runs over all pairs of nearest neighbouring sites of a
given array, K = J/kBT > 0, ﬁié is the unit vector starting from
the site i to site j,.and {ni} are spin variables which can
take the values.n =0,l,2,...,9-1. The parameter A z 0 might
cause a tendency for the phase angle 2mn, /q to have a conbimxms
rotation as a function of the position along the 2 direction.
This competes with the restriction that the phase angle must be
discrete and this competition leads to commensurate;incommensu-
rate transitions. For q= 2 the chiral Hamiltonian is, for arbi
trary A, equivalent to an(anisotropio) Ising model at aerqjﬁeld
when % = 0 and g =3 the model reduces to the standard  ferromag
netic three-state Potts model. From now-on'we will consider pla_
nar lattices and % = E§u1where ¥ is the unit vector along a ai-
rYection .which i chosen .once for ever.

| The ground—state-of'the g=3 model is ferromagnetic (n, =mg
for all sitee) when |A| < 1/2. For 1/2 < &‘<'3/2 the ground
state presents a.ferromagnetic configuration along the . x-axis
and right-handed chiral configuration along the y direction.

To be more precise the spins.form, along the y-axis, the . pat-
tern...0120120).... This ground state is commensurate with the
lattice and the spatlally modulated order has a period of p = 3
lattice constants, 1/2 is a multiphase po:mt.[:”:| where
the ferromagnetic state and any possible right-handed chiral se
guence share the same energies. The ground state is then  in-
finitely degenerated. .
At A = 0 the Hamiltoniah (2.1) has a symmetry Sq1 1.e,_' it

is invariant under any permutation of the labellihgs of the
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three spin states. For A # .0 the model has a lower . symmetry,
-namely, 33,-being invariant only under dyclic permutations of
the spin labels. On the other hand, the partition function is

invariant under the following transformations:

1) A > =A (2.2)
if one makes the identifications
n, > -ni(mo&.B), (2.3)
that is, if we change the right-handed for a-ileéft-handed

chiral ordering;

where m is.an arbitrary integer, since one trans-
forms each spin n, to

n, + (ni + yim)mod 3 (2.5)
where Y, is the coordinate of the site i along the y~axis.
COmbining‘these two symmetry operations with m =1 the parti
tion function is invariant under the transformation
A1 < (2.6)
n, + (—ni+yi)mod 3 (2.7)
Then the phase boundaries are invariant under reflexion.about the

line A = 1/2 and we only need to analyse the range 0.2 A< 1]2.-

However, the phases themselves must be identified differently
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within the regimes 0 < ﬁ < 1/2 and 1/2 < A '€ 1. Indeed, from
{2.7) we have to take into account the correspondence between
férromagnetic {A < 1/2)-and chiral (A > 1/2) ground states.

We shall now address the chiral Hamiltonian (2.1) on the
hierarchical lattice generated by theé cell shown in figure l.a.
The choice of this cell has been done in order to simulaté the
square lattice. To do so two features seenm essential: the
self-duality of the square lattice, and the preservation, under
renormalisafion, of the ground states of the system. The cell
we have selected is the smallest Wheétstone-bridge-type cluster
with these properties. The renomalisation transfomatioh -be-
tween the cell of figqure i.a_and the simple bond shown in figu-

re 1.b is defined by imposing the equality

EXPEH.'(K"ﬁl)-}-c] = . ‘Z o :exPEH(K-,L\.)]. _ 2.8

After some algebraic work one obtains the following  recursion

relations
tn(d: ¢1¢ ) (2.9)
1 uz |
k' =3 _I:Z‘an; En(¢ ¢ )] + 3Een(¢ /¢ )] | (2.10)
. 3 /ZT«‘ln(tbz/dbl__)
AT = oy AT TG Snte 9,0 | (2.1

vhere ¢o' ¢1 and ¢, are the analytical expressions ~.for the
sums in the right-hand side of equation (2.8}, with the teminal

spins fixed in (nl,nz) = (0,0),(1,0) and (2,0).respective1y.
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Each one of such expressions involves the counting of 3 12 con-
figurations which were summed up through an algebraic PL1 com-
puter program. The RG flows (determined by egs. (2.10) and o
(2.11) in the (K,A) space will provide the phase diagram and

the thermal critical exponents of the system.

3 RESULTS

The recursion relations (2.10) and (2. 11) present an uns-
table fixed point at A = 0 and K“§ £n(/3+1) which «cdrresponds
to the 3~state Potts_fer'rorﬂagnetic. criticél point. Its critical
exponents are %30:975_ and ‘\Jﬂ' v3.052; cmséquentiy_ the Crossover é.xpment
is ¢ = v,r/va ~ 0,319, Tﬁis value is to be compared with thg
.déan Ni_js'g’; value ¢ = 1/6.'—_-13:| and the series value EM] ¢ =
0.19 + 0.06 for the square lattice. Fcn:‘an hieranchibal lattice :(with
intrins:.c dimensionality & eff : =2) where the Migdal-Kadanoff renormalisation
method is exact mDsJ obtains ¢ = 1/2. Therelis a second unstable

fixed point at 4 ='1/2 and Kk ! 0. Also a semi-stable fixed

point is present at Zn 0.113 (K'\:1452) and A v 0.382, wheretheoawen.rem
variable Z:is:defined as Z = exp (<3K/2). For this fixed point we
have the critical exponent- v, X 0.949. This poin‘t is to be
identified with a Lifshitz-type fixed point and ocur estimative
for its (K,A) is consistent with the reference (7] which sug-
gests K &~ 1.053 and A e [[0.4,0. 42.:], and with the reference [ §]
which suggests (K,A\] Y (1'.‘.111 0.4 + 0,03).

In order to complete the analys:.s of the fixed points and

of the RG flow we have considered the asymptotic foxm of the recur |
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sion relations (2.10)-and (2.11) when 2% goes to zero (T -+ 0).

The leading term imvolves the ground and first.excited states of the
'system under the special conditions imposed by the fixed values
assigned to the two terminal spins in the cell of figure 1.a. '
Indeed, it will appear interfacial wetting transitions (4] nat
divide the commensurate phase into two distinct regions, name-
ly, 0 < A < 1/4 and L/4 < A < 1/2. Fof 0 < A £ 1/4 we have the
following asymptotic recursion felations for (2.10}) and (2.11)

7t A gP (3.1)

A' A A | (3.2)

where b is the scale factor (b =4 in our case). The .Jacabian

of these transfomations is

: : (3.3)

1
In other words, A is a marginal parameter, and we have a Line of
fixed points for Z =0 and A ¢ [:0,1/4]. This line of = fixed
points- seems to be.due to the incomplete wetting in this . part:

of the ferromagnetic'phase. Por 1/4 < A < 1/2,‘the asymptotic

recursion relations are.

b(/icosgzé-sengﬂé)

7' N T 3 3 (3.4)
A' = 1/4 (3.5)
So the fixed point is located af_(z,d) = (0,1/4) and the as=-

sociated Jacobian vanishes. Starting with a small 2, the 1line
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Z2 =0 behaves as an atractor for A such that 1:t'(»/?7cc::us21_;:ﬁ - senzgé')

and a repulsor otherwise. The complete renermali_zatm g_mup-

>1

flow diagram is shown in figure 2. Figure 3 shows the critical

line as well as the line corresponding to the wetting transition.

4 CONCLUSION

We have focused the criticality (phase diagram and.the'nnal
cr:l.t:i.cal exponents) ef the three-—state chiral clock model in
a. suitable planar hierarchical lattice (see Fig. 1). To do
this we have adopted a real space renormallsatlon group formalism
which preseryes the correla.tion function between two sites.

- We find that the chiral parameter 1 is relevant and the::efore
any point of the ferromagnetic—-disordered phase boundary with
A# 0 is governed by a fixed point distinct from the pure Potts
cxitical point. Therefore, we have a new "chiral" universality
class. Our reéults support the. possibility of the Lifshitz point which
characterises this new universality class. Also, we calculate
numerically the line of wetting transition resulting from the
interface properties of the model. These novel interface .fea-
tures are "seen" in our methoél due the special conditions im-
posed to the two terminal spins in the cell. We belleve that
the various critical lines and pointa.of the phase diagram are
excellent approximations for the square lattice.

We are‘ de_eply indebted to A. Szpilka who prj.Vately' commmnicated
to "us preliminary calculations cnncerm.ng the b =2 . case. Alse we

benefited from fruitful computaticnal assj.stance by L. Reis g
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well as of interesting discussions with E.M.F. Curado. One of

us is financially'supported by CNPqg (Brazilian agency).
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CAPTION FOR FIGURES

Figure :1 -

Figure 2 -

Figuré 3 -

Cells uged to construct 'the renormalisation group;
and -0 respectively denote internal and terminal-sites,

{a) b = 4 graph; (b) b' = 1 graph.

Renormalisation group flow diagram., P and L repectively de
rote ‘the Potts and Lifshitz fixed points, At A =0 the
flow is that of the three-state POﬁts nodel. We see
that the fixed point I, governs the ferrdmagnetic—dis-;
ordered phase transition for A # 0. Also, the fixed pomt
at Z = 0amd A = 1/4. is an atractor for a special 1line
(the wettinglline]; At the line Z==0.we'have a segnment
of ‘fixed points for & ¢ [0,1/'4j.

Part of the phase diagram of the three-state ‘chiral
clock model. (B) denotes the diso;dered, (F)‘the fer-

romagnetic and (C) the chiral phases. The ferromag
netic phase is itself divided, by the wetting. line, inta
two reagions, ‘namely, the non—wetting {NW) and the
wetting (W) ones. The boundary between paramagnetic
and incoﬁmensuréte-or high commensurate phases.(I) is

indicative.
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(b) b'=

FIG.A
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