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ABSTRACT

There are two different cases in R-space for tachyon
gquantization, namely: when {R|?>m®and when |k%| < mw®. We
concentrate our discussion on the second case, for which we
write the hamiltonian, which is different from the usual
harmonic oscillator one, and solve the corresponding eigenvalue
equation. The spectrum is continuous and we find the energy
creation and destruction operators.

Key-words: Quantum field theory; Particle theory.
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1 INTRODUCTION

When one generalizes 1in a straghtforward way the
supersymmetric Wess-Zumino model! to spaces of dimension
d > 4, one is led to equations of motion of higher order.

For the free field case these equations have the form'?

(7]
(|:|2‘ m&))¢ =0 ) w =2 ) (1)

with metric (-,+,+,+,...).

For any d > 4 these equations have a tachyonic component,
i.e., we can always factorize a "tachyonic operator":( 4—nﬁ),
with all the implied intrinsic difficulties: imaginary mass,
lack of unitarity, causality, etc.

When quantizing the field that obeys eq. (1), the presence

of the above mentioned tachyonic operator gives rise to some
problems which we want to discuss in this paper.

2 LAGRANGIAN AND HAMILTONIAN

For the specific case of six dimensions, equation (1)
takes the form

(p®-nY% =0 (2)

which can be derived from the second order Lagrangian

E=3pépé-2ns (3)
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-2-
through the Euler equation:
8k ak a% .
3 = 3, 33;3 + 8,05 332553 = 0 (4)

A
The energy-momentum tensor ig!¥

- = He%aVs ¢ - 2 ¢at'e¥s - o%a at'aVe

1 g

+a¢a” ¢ + a"¢aM ¢ + (o¢ge - n'e?) (5)
In particular
™ = - 155 - 40d + 85 + 1 aenp - Laty? (6)

The solutions of eq. (3) can be written in the form:

$(x) = Jdk {a:‘e'"‘x + a:e“‘x + (bk ‘k"+b2e““‘) e(l’cz-—ma) +

- >
+ (cxe-wteu.r + dke“'"' -1E. r)e( _Rz)} (7)
where kK°=w=vV ¥4’ ; k=0 =[ Ez-mal and ©8(x) 1is the

Heaviside step function.

When the field is real (¢(x)=¢*(x)), we have:

Kk k ; k -k ' k -k (8)
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With (6) and (7) we get the Hamiltonian:
H = [dﬁ_ T = mzjdﬁ{(a:ak+aka:)w2 - (b,b_+b b)o’e(R*-w?) +
+ (ckdk+dkck)629(m2-ﬁz)} (9)

The last term in eq. (9) is the contribution of tachyons
naving |K| <m to the energy of the field. This sphere in
RB-space 1is left out of consideration in the work of
reference [4].

3 COMMUTATION RELATIONS

Heisenberg equation of motion

[H, ] = i¢ (10)

together with eq. (7)) and eq. (9), gives for a, a,

2 1., » 2_-1ke'x _ -ikx -
m J’dk-[dk [(akak+akak), a, jue = [dk a we (11)
From which it follows:

[a:'ak’] = - a_(ul (12}

2
2mn w

In an analogous way, we deduce:
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b, ) = SEED (13)

2me
and

T ﬂ(ﬁ;—_ﬁ_l (14)

2m W

In the Hamiltonian (9), the "a" and "b" terms have the
usual form of the harmonic oscillator (up to a sign for the "b
terms®) and the same happens with the commutation rules (12)
and (13), so we shall not discuss them here.

We take the "¢ 4" terms and consider the following
Ramiltonian

H = mZIdk (c,d+dc) dom’-R) (15)

which can be taken to represent a superposition of systems
having for each degree of freedom %, the Hamiltonian:

Hk = % (pqu+qkpk) (16)

where we have defined:

¢c =—= , 4 = —= (17)

with [qk,pk] = 1

in a "discretized" ﬁ-space.
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‘Note that according to (8), c, and 1:1.Il are not hermitian,
so, strictly speaking we should write in (17), Re c, (or Im ck)
and Re dk (or Im dk), but for the sake of simplicity we assume
c, and dk to be real. We shall also suppress the subindex k.

4 EIGERVALUE EQUATION

We have then the problem of solving the eigenvalue
equation for the operator (16); i.e.:

Z (pa+ap) ¥ = EY (18)

or, in the usual g-representation

N e

(§§q+qga)w=w

leading to the differential equation:

d = -1
q dg v = (iE Z)W (19)
whose formal solution is
1
g =2 q": 2 (20)

However we have to be careful as (20) is not well defined at
the origin. In order to overcome this difficulty we follow

reference [5] and define:
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1E ~ E
¥, = Aq, (21)
and
iE - E
y_ = Bq_ (22)
where
q} = c',e7t for g > 0
qf =0 for g = 0
.
qf = |q|A for g< 0O (23)
qf =0 for q = 0 |

Both (21) and (22) are linear independent solutions of (19) for
any value of E. What about normalization and orthogonality?

It is evident that the ¥, functions are orthogonal to the
¥_functions. Let us take two ¥, eigenfunctions.

i (El-Ez)-l

<V, |¥)> = Alag‘[dq q (24)

Changing variables to y =Ing, we obtain

. i{E -E )y .
<y |¥5> =Aanl|dye ' ¥ =o2n AA 3(E-E) (25)
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So that for &-function normalization we take A = 1 and
v 2n
then eq. (25) gives the orthonormality relations.
To prove completeness let us consider
+ 1 1 +
-1E - = IE -~ = 1E ({ny -Inx }
%-EIdE X, 2 Y, 2 =—IIdEe v o=
- ZWX+Y+_
= $(tny ~tnx ) = 3(y,-x,) (26)

xfy-lr

Of course, we have formulae analogous to (25) and (26) for

the ¥ (eq. (22)) eigenfunctions.

As an example we shall consider the expansion of a plane

wave in the eigenfunctions (21).

The Fourier transform of q} is (See ref. [5])

A i i A 1 1E - -;-
dg g, e®? =i e I(-iE + 3)(p+io) (27)

nIA

= -ig- 1
A =-iE- 3

So, we can write the plane wave as a superposition of v,

states

1 1

* 1 — (-iEe =
tpa _ 1 IdE e 2 2 P(-iE+ %)(p+io) 2q 2 (28)

*

This formula is valid for g > 0 (zero otherwise). An
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analogous formula can be written for q < 0.

The expansion (28) can be verified. Taking into account
Stirling’s formula

z -

I(z) = 2 eV (1+0(3))

O |

one sees that it is possible to close the contour of
integration (in (28)) in the lower half plane by a semicircle

at o. The only enclosed poles are those of I(-iE+ %) which
occur at

. 1 n 1
E in+ 5) with residues (~1) T

We then obtain for the right hand side of (28)

z%ﬂn = '™ (for gq > 0)

5 CREATION AND DESTRUCTION OPERATORS

It 1is interesting to observe that one can define
“creation" and "“destruction" operators for the energy.

In fact, due to the form of the Hamimltonian eq. (18) and
the commutation rules, we see that:

m,q"] = 3 t0,9%la + 3 a [p,q’"]

M9 = - ig &z q = E g (29)
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So that q:E can be considered to be an energy creation
operator of amount E. It should be noted however that, if E is
negative the operator turns out to be an annihilation operator.

Analogously, if we take (p+io)™'* and evaluate its
commutator with H, we find:

[H,(p+io)"®] = ip 33 (p+i0)'F = E(p+io)** (30)

Which shows that for positive E, (p+io)'m is also an energy
creation operator of amount E.

1
iE - =
If we take an eigenfunction q, 2 of H with eigenvalue

E and applied to it the operator qic, we obviously obtain

1
1 (E+€) - =
another eigenfunction q, “ with eigenvalue E+e.

It is not so obvious what happens when we apply to the
same eigenfunction, the operator (p+io)'w. The result can be
obtained by going over to the p-representation by Fourier

E - =
transforming q, 2 (see eq.(27)). It is also possible to
work in g-space if we note that, for arbitrary e, (p+:i.o:>)'18
acts as a fractional derivative on functions of qgq: (cf.
reference [5] chapter (1.5)}

IE - = 4 1E=1 1E -
(p+io) '€ ¢q = —31 '[(q-é) g 2ag-=
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: 1 (E+£) - 5
1 LE=-1 iE - 3 _ I"(iE+ —)q
I'(1iE) C(i(E+c) + 3
£ -2
So that, acting on g 2 the operator (p+io) %

produces the same effect as qfﬁ Of course the same happens
with any linear combination of these two operators

[H,(x q.° + B(p+ic) ') = E{a q," + 3(p+io)'m}

Analogously, we can show that qiE (defined in eq.(23)) is a
creation or destruction operator, according to the sign of E.
Acting on the q_ -eigenfunctions (eq. (22)), it produces the sanme
effect as (p+io)

Note that we have the relations (c¢f ref. [5))
(qﬂl-:lo:a):’L = q;: + ' q?‘

(g-io)* = ¢ + &M ¢

which means that (qtio)iE can also be taken as creation
(destruction) operators for the energy.

A word of warning is perhaps useful here. Although we can
define several creation and annihilation operators for the
energy, they should not be mistaken with the corresponding
operators for the number of particles. As a matter of facts, a
number operator with integer eigenvalues does not exist for

tachyons with |R| < m.
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6 DISCUSSION

We have here considered some properties of the wave
equation for tachyons having |R| <m. This is the region of
ﬁ—space which was left out of consideration in reference [4].

The base for our discussion is contained in formulae (7),
(8) and (9), and, for the specific case of the above mentioned
sphere, in formulae (14), (15) and (16).

We observe that while the coefficients of the harmonic
oscillator expansion appear when |ﬁ| z m, and correspond to the
usual creation and annihilation operators; for |K| <m those
coefficients are to be compared with the ordinarily used
canonical conjugate operators q and p (see egs. (14) and (17).
This is the origin of the eigenvalue eqguation (18} or (19),

whose solutions are given by (21) and (22).

Note that the spectrum of the Hamiltonian (16) is
continuous, and extends from - to + . The energy is not
quantized, i.e. (16) has not discrete eigenvalues,

An operator for the "Ynumber of tachyons" does not exist
for |B| <m. What it does exist is a set of operators q,,
(qtio)'®, (ptio)~'F, p;iE which ‘"create" (or “destroy")

excitations with energy é.

There is a striking difference with the usual harmonic
oscillator case for which we have

a = % (p-iq) ' a* = 7 (p+iq)

and these are destruction and creation operators of a guantun
(particle), whose number operator is a*a with integer
eigenvalues.
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In our case, an operator for the number of tachyons does
not exist, i.e. it does not exist a particle which we could
call a thachyon.
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