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Abstract
A general procedure to study critical phenomena of magnetic systems is dis-
cussed. It consists of systematic series of Landau-like approximations ( Extended
Variational Method } and the coherent-anomaly method (CAM). As for suscepti-
bility, the present method is equivalent to the power-series CAM theory. On the
other hand, the EVM gives a set of new approximants for other physical quantities.
Applications to d-dimensional Ising ferromagnets are also described. The critical

points and exponents are estimated with high accuracy.

KEYWORDS: mean-field approximation, critical phenomena, coherent
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1. Introduction

In various physical problems in which cooperative effects play an essential role,
the mean-field type approximation is the simplest approach. It is well-known, how-
ever, that these approximations have a serious defect that they only provide such
classical values of critical exponents as do not in general coincide with the true
ones. Of course, it is possible to improve the approximation in several ways, taking
the fluctuation into account, enlarging the cluster size, treating many-body corre-
lations correctly, and so on. Then the estimated value for the critical temperature
gets closer to the exact value. In some cases it is even proved that there exisis a
systematic procedure of improvement which gives a series of approximate critical
temperatures converging to the exact one. However, such procedures have been
believed not to improve the values of critical exponents. Then, at a glance, such
investigations based on mean-field approximations seem to be meaningless from a

modern view-point of critical phenomena.

In order to overcome this difficulty, the coherent-anomaly method (CAM) was
proposed by M. Suzuki [1] . Using this method it becomes possible to investigate
‘the true critical behavior by a series of mean-field-type approximations. Various
applications of the CAM theory based on cluster-mean-field approximations have
already been reported. [3 ~ 17] Instead of the ordinary cluster-mean-field ap-
proximations, we present here another type of approximations called the extended
variational method (EVM). {2] This method consists in a cumulant expansion
of the free energy and is related to the high temperature expansion(HTE). Each
single approximant calculated by the EVM exhibits the same critical behavior as
in the cluster-mean-field approximations. Then the EVM is expected to become

canonical to obtain reasonable results about the true critical behavior by analyzing

it using the CAM.
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2. Extended Variational Method
The EVM was originally proposed by Tsallis and L.R.da Silva [2] to improve
the standard variational method. The ordinary variational method is based on the

following Bogoliubov inequality:
Fy = Fy+ (M — Moo 2 F, (1)

where

'I?r[e“"ﬂ"‘ﬁ .o .]

= - -BM = - -fMo e I e—————
F=-TlogTrle™”"”], Fo=-TlogTt[e™""™], and (- )= Tje=PRa] "
Here, H is the original hamiltonian and Hp is a conveniently chosen trial hamilto-
nian which depends on a set of variational parameters {A}. In determination of

these parameters, it is quite natural to set these values so that the trial free energy

F, may be the closest to the true one F. Thus we have the stationary condition

g_iz({,,},{A}) =0 (for all i). (2)

For example, consider the Ising ferromagnets with the external magnetic field on
a d-dimensional hypercubic lattice. It is well-known that Eq.(2) gives the same

results as the Weiss molecular-field theory by Weiss if we take
Ho=—A) S;

as the trial hamiltonian in Eq.{1). As to the critical exponents the EVM gives
wrong estimations and especially in the one-dimensional case, it gives a finite
critical temperature though it does not really exist. So we have to devise a general
procedure to improve the approximation by which we can calculate any physical
quantity with an arbitrary precision (at least in principle). The first procedure one

may think of is to improve the trial hamiltonian. Since we have the exact result if
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we take H itself as a trial Hamiltonian, we can expect to get the desirable series of
approximations by considering a series of trial hamiltonians {H((,")} which converge
to H. The cluster-variational method (CVM) proposed by R.Kikuchi [18] is one
of the procedures in this direction. In fact it has already been reported [17] that
the combination of the CVM and the CAM works well for Ising ferromagnets on a
simple cubic lattice. In the CVM, we consider not only an effective field imposed
on a single spin but also many other kinds of effective fields. Because of this
variety of the mean fields, the CVM gives very accurate prediction for the various
physical quantities. The calculation, however, becomes extremely complicated
when the cluster size is increased, because the number of mean fields which we
must treat grows very rapidly. For this reason we can treat only small clusters in
this scheme. Instead of the improvement of the trial hamiltonian, we can improve
the Bogoliubov inequality Eq.(1) itself to get a canonical series of approximations.
The EVM is a strategy of calculation in this direction.

Let us consider the hamiltonian H and the trial hamiltonian Ho({A}). If Hp
commut&s with 7, we can write the free energy as

F = —TlogTr[e"P™] = —T'log Tr[e~#Moe W‘]

= —T'log Tr[e #Ho E -——-——(_ﬁ')m(AH)"']
m=o (3)
)m—l

_F+N2(ﬁ K-

m=1
where

AH=H-Hy, Fo=-TlogTt[e"], N = the size of the system
and &, is the m-th cumul&nt For example,
=5 {iamn},
Ky = —{((AH)’*) —(an)*}
‘?’ '
Ky = -ﬁ{«Am-") —3((AHPNAH) + 2<Au)=}, etc.
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Equation (3) is an identity and holds for any trial hamiltonian commutative with
H and of course F does not depend on Hg. Next, if we terminate the expansion

series Eq.(3) at m = n we have the n-th approximant of the free energy [1]

F,=FR+N Z (—-'-“‘i'):n_-lﬂm- (4)
m=1 :

Here F, depends on Mg, but we can expect that
lim Fa({A}) = F, (5)

when we fix the variational parameters {A}. For determination of A’s it is quite

natural to require the stationary condition [2]

OF,

F,, = stationary, BA: =
4

0 (for all i). (8)

In the case of n = 1, this condition coincides with the ordinary stationary condition
Eq.(2), and consequently it is supported by the Bogoliubov inequality. For n’s
larger than unity, there is no inequality which supports Eq.(6). Furthermore,

since A’s determined in such a way depend or n, Eq.(5) should read
Jim Fal{An}) = F @

which is not necessarily satisfied. So far, we have no mathematical proof of con-
vergence of physical quantities calculated by this scheme. However one can find in
Ref.2 a pedagogical example. Non-interacting classical unharmonic oscillators are
treated there in this scheme. The convergence of various physical quantities such
as specific heat and susceptibility has been confirmed numerically.

Now let us see what happens when we apply this scheme to the model of

ferromagnets

H=H+V=-J) 8 -8;-HY S, (8)
(X)) L]
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In this case, the most natural choice of our trial hamiltonian may be the the

following similar to the external field term:
Ho=-AM=—-A)_Si. (9)

According to the number of components of spin (= D) we have the Ising model
(D = 1), the XY model (D = 2), and the Heisenberg model (D = 3). Here, A is
not a real external field a the variational parameter. Since Hp commutates with A,
all the formulas given below are applicable both to quantum systems and classical
systems.

The quantities in which we are interested are the critical amplitudes of the
susceptibility, the spontaneous magnetization and the critical magnetization. For
this purpose we need only the first few terms of the free energy expanded with
respect to H and A. All the coefficients of this expansion can be expressed in a

compact form with HTE coefficients as follows. The relevant part of 8 f, becomes

A2 2
s = Xaip) - amwie) - Srp + Lo, (10)

where

A= A, h=fH,
&(8) = o\¥ g1 - apn,
¥(8) = o), g,

n-2
I(p) =Cy =3 a'",

o(p) = %(aa*w: S s )
and a$? and al!) are the HTE coefficients of the second and forth cumulants of
magnetization, respectively. Equation (10) is a Landau-like expansion of the free
energy in our scheme. The derivation of Eq.(10) is given in Appendix. In the

derivation of this equation, we use only the facts that the { commutes with V
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and that My has the same form as V has. Thus this formula can be usgd for

various other systems as well as for the Ising ferromagnets.
(1) Susceptibility x
By differentiating Eq.(10) with respect to A, we have
A®(8) — h¥(8) + A*6(8) = 0. {11)

This equation determines the relevant variational parameter. Then the zero-field

susceptibility becomes

ﬁ_1 (n) — _oh: (ﬁf(rdeﬂant)) -
=-(ZY e +2(5) w0 + 106, _,
2
‘I;((ﬁ;) +T(8) (12a)
(2) gk -1‘9" -
= B + 7 (12b)
Eonpo

Here the relation 9A/8hl,_o = ¥/® has been used. This is the n-th approximant
for the susceptibility in the present scheme. One can easily see that g1 x(?) is
[n —1,1]- Padé approximant of the HTE. As is well known, the poles of [n — 1, 1]-
Padé approximants are located at the critical point obtained by the ratio method.
In fact x{®) has a single pole at

a?

™ = '};)‘ (13)

Concerning the amplitude of singularity, we find, from Eq.(12b),

2
g = (@ o

e (14)
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(2) Spontaneous Magnetization mg

Differentiating Eq.(10) with respect to h and setting h equal to zero yields

‘”wr--( ) 1o

o2 (15)
= —A8(8) - X(6) ~ N 520().
If we set A =0 in Eq.(11) we get
_ (_2(B)\!
= (-3@) (16)
Differentiating Eq.(11) with respect to h yields
22(@(8) +3X0(9)) = ¥(6).
Substituting the right hand side of Eq.(16) into this equation, we have
6x _ _ ¥(B)
3h = T20(8) (17) .
Then, we can rewrite Eq.(15) using Eqs.(16) and (17) as
m™() =2%(6) = %) - 5)”
(‘I'(B( ))3) (ﬂ " ))% (8
oM/ \ aM /
Thus we find -
m_ (¥ 3
w) = (MES (8e™) )} (19)

e(8™)

(3) Critical Magnetization m,
Next, let us calculate the magnetization at the critical point in a finite external
field H. At the critical point, ®(8) is equal to gzero. Consequently, from Eq.(11)

we can find -
('I'(ﬂ ), )

o(p:") o
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Substituting this into Eq.(10) and setting ® equal to zero, we obtain

(relewmt) \F(ﬁ(n))‘
Bef (e(ﬂ("))) 1

Differentiating this with respect to h, we get

melH) = — (B

_ ‘F(ﬂ(”))4 } (21)
- (ﬂ e(ﬁ(")) ) &
Hence, -
a™ = (g™ (8:")4\d
(ﬁ O(ﬁ(")) ) (22)

We have now derived all the formulas necessary for the CAM analysis on the
basis of Eq.(10). We can obtain the critical exponents , and & by using these
equations together with the coefficients of the high-temperature expansion, and

using the coherent-anomaly relations to be briefly reviewed in the following section.

3. Coherent-Anomaly Method

The coherent-anomaly method (CAM) is recently proposed by one of the
present authors (M.S.) in order to estimate the true critical exponents from a series
of approximants with classical singularities. The general formulation is given in
Ref.1 and Ref.3 and various applications have already been reported to confirme
the validity of the CAM. In the case of Weiss-like approximations for the Ising
ferromagnet, it has been proved [2] that the approximate critical temperatures
converge to the exact one when the cluster size goes to infinity. In the same case,
the relation between the CAM and the finite size scaling theory [19,20] is also

clarified [2] . The essence of the CAM is the following coherent-anomaly relation:

£ o |__ﬁ___

S (23)
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Here ¥ is the critical amplitude of the n-th approximant defined by

(n) é
popr I AL

where x{"){(8) is the n-th approximant of the susceptibility x(8), and Bg“) and

X™)(B) = 5

B: are the approximate and exact critical points, respectively. The index v is
the exact critical exponent and ¢ is the classical exponent of 4. Using Eq.(23)
and several pairs of ¥™ and ﬁg"), one can estimate § and vy by some regression
analysis, say, the least square method. Moreover, in Refl, the coherent-anomaly
relation for the critical amplitudes of the spontaneous magnetization m, and the

critical magnetization m. are derived. That is,

L ¢. ]
™ L(— ™ o |ﬂ—° v (24)
B — AV g - B
where
=1 = 1.1
'|ba=§_ﬁ and !bc=('7+ﬂ)(3 6)

4. Application to the Ising Ferromagnets

The approximate critical points, and the critical amplitudes of singularities for
the above three quantities are listed in Tab.] for the Ising model on the simple
quadratic lattice. In Fig.1 and Fig.2 the coherent anomalies for the magnetic
susceptibility, the spontaneous magnetization, and the critical magnetization are

shown. We assumed the following fitting function:
Q" = AB(C+Dt+E?)  (Q=x,msm.)

where t = £ — ,(;" and A, B,C,D and E are the fitting parameters. Here we
have used the exact value for B%. The values of the critical temperature and the

exponents obtained by the least-square fitting are

v—1=0746(2) [0.75], ¢, =0.39(1) [0.375], .= 0.510(6) [0.5].
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where the number in the square brackets are the exact values. These values result
in

y=1746(2), B=011(1) and &=17Q1).

Here, the errors stand for one standard deviation if the data points obey the
Gaussian distribution. In this case, however, it is not justified because the data
points are not even stochastic. This is the reason of the slight under-estimation of
the errors. Unfortunately, the effective method for error estimation of this type is
not yet established. In Fig.3, we have shown the values of v for various numbers
of dimensions calculated using the HTE coefficients up to the 8th order. In this
case, the fitting was done for the last 3 even points and the fitting curves are mere

straight lines.

5. Summary and Discussions

We have presented a general procedure to investigate the critical behavior
of magnetic systems and applied it to the Ising Ferromagnets. The relation to
the HTE(B-expansion) has also been clarified. Especially, the approximant for
the fluctuation of Q coincides with {n — 1,1]- Padé approximant for the HTE of
< (* > and consequently the approximate critical point is the same as that of
ratio method. Thus, as for the susceptibility, the present procedure is equivalent
to the power-series CAM theory proposed by one of the authors(M.S.). [10,11]
Moreover, as for other quantities, we have obtained new formulas consistent with
the scaling law.

In the application of the present schéme to the Ising Ferromagnet we have

confirmed the validity of it. We have obtained

v=1746(2), PB=011(1), &=17(1).
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Although we have no mathematical proof of the convergence so far, the result is
quite reasonable except for the slight under-estimations of the errors. In other
words, the convergence of the present theory is almost equivalent to the conver-
gence of the {n — 1,1]- Padé approximant of the HTE.

Applications of the present formulation to various other systems with com-
plicated order parameters such as the planar model are also interesting future

problems.
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Appendix

First, let us write the original and the trial hamiltonian as
H-n-HQ (A
and

Ho = —AQ, (A2)

respectively. Then, the density matrix is
e~ PN = g=BHo—B(H-MHo) (A3)
We have to expand the second term of the right hand side of this equation. In other
words, we have to expand the whole density matrix with respect to the second #

only. Thus it is convenient to distinguish two #’s by rewriting the second f as B.

Then the resulting expression is slightly different from Eq.(A3):

e~ PH = ¢=FHo g -B(H-T0), (A4)
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Then our n-th approximant of the free energy becomes

1 ;
Bin= 3l log Tr{e~PHoePH-Polp),, (46)
where
D_peB'ln = nB*. (A7)
k=0 k=0

If we change the order of the exponents in Eq.(A6), we get

o= l-log Tr{ePHe2Y,, (48)

where
E=pA+B(H-A).

It should be noted here that we need only the terms proportional to A?,AH and H?
in order to calculate the susceptibility y, and that the terms proportional to A% and
AH are sufficient for the amplitude of the singulanity ¥. In addition to these terms,
for 7, (the amplitude of the singularity of the spontaneous magnetization), the
term of order H* is needed. In any way, the full expansion series is not necessary.
The important terms are the first few terms in the =-expansion series. Keeping

this in mind, we can rewrite Eq.(A8) as
Bfa = — [{-— logTr{ -BH (1 +EQ+ —--’Q2 E“'Q’ + %E‘Q“)}]L + o(EY)
=51~ los{Zo(ﬂ) « (1+ 3@+ 5 (Q‘)a) H]. +o=*

= Bl - I C‘”(ﬂ)ln - I—C‘"(mln + oY),
(49)

where

Bfo(B) = (= log Tx[e#¥)),

CN(B) = 1@, (4100)
c®(g) = {(@%s - 36@M3} (4106)
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and

_ Tr(e=%...)
¢ = Ny

Furthermore, we have
n—2

[E:CP(B)]n = FACE + 28BA(H - AYCD, + B*(H - AY'CL)

where

) = [CD @)

Now, there is no need to distinguish 8 from S any more. Thus we get

[£20@], = B{A(CY) - 2000, + C,) - AH(-2C2, +202,) + HCD,).
If we expand C(*)(B) with respect to 8 as

Ct)(B) = (-1)8 Za"” (A1)

we find

[E2CD(B))n = £ (A 0P8" — o) 871) + A (222, p71) + HCL,). (A12)
In a similar fashion, we get

[E4CWOB)n = BA (= 8" + 30l 71 — 300, 7% + a7 )

(A13)
+ O(H*, H3A, H*A?%, HA®).

Substituting Eq.{A12) and Eq.(A13) into Eq.(A9), we get Eq.(10).
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Figure Captions

Fig.1 The CAM plot of the susceptibility x obtained by the EVM for the Ising
model. The closed squares are used in the least square analysis. The solid hne is

the fitting curve and the dashed line is its linear part.

Fig.2 The CAM plot of the spontaneous magnetization m, and the critical mag-
netization m,. The amplitudes of the singularities are calculated by use of the
high-temperature expansion series of the forth cumulant of the magnetization.

The closed squares(triangles) are used in the least square analysis.

Fig.3 The value of v for d =2, 3,4,5 and 6 calculated with the HTE coefficients
up to the 8th order. Closed circles denotes the values obtained by the pr-esent

method and closed squares are the exact values.
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log (’fhs) : log (ﬁ%c)
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~18=
n ﬁy‘) i(“) i, me
1 0.250000 0.250000 1.732051 0.908560
2 0.333333 0.444444 2.065591 1.237767
3 0.346154 0.497724 2.232278 1.353615
4 0.376812 0.698890 2.501090 1.635144
5 0.382483 0.753096 2.594958 1.718055
6 0.393543 0.893566 2.779137 1.903921
7 0.397352 0.955891 2.870876 1.989814
8 0.403761 1.086439 3.015059 2.145518
9 0.406810 1.162544 3.120271 2.245250
10 0.410357 1.267970 3.225047 2.362619
11 0.412541 1.344217 3.328487 2.460298
12 0.415088 1.447246 3.423927 2.569590
13 0.416639 1.519162 3.515527 2.657837
14 0.418506 1.617262 3.604082 2.759243
15 0.419713 1.688666 3.689207 2.843173
16 0.421117 1.781345 3.769659 2.936189
17 0.422083 1.852133 3.849885 3.016634
18 0.423184 1.941077
19 0.423969 2.010568
20 0.424858 2.096647
21 0.425508 2.165017
00 0.440687

Table 1. The approximate critical points and the amplitudes of singunlarities
the spontaneous magnetization and the critical
VM using the HTE coeflicients of the second and
forth cumulant. As to the HTE data, see the Ref.21 for the second cumulant and

for the zero-field susceptibility

he £

magnetization obtain

the Refs.22 and 23 for the forth cumulant.
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