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Abstract

We show in general that the Dirac—Clifford ring formed by the
Dirac matrices and all their products, for all even and odd spacetime
dimensions D, span the commutation algebras su(2D/?) for eveﬁ D
and su(2(0-1)/2) @ ou(2(P-1/2) for odd D. We discuss some physical

consequences of these results.

Key-words: Dirac equation; Clifford algebra.
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1 Introduction

In recent years, we have shown that there is a close relationship for space-
time dimensions D = 2, 3 and 4 between the ring of Dirac~Clifford matrices
and unitary algebras (respectively, su(2), su(2) ® su(2) and su(4)) (1,2].

We conjectured at the time on the existence of a general framework
for the ring formed by anticommuting Dirac—Clifford generators and their
products and that it is precisely related to definite unitary groups. We are
now able to prove this in the present article.

The original evidence on this connection was the treatment by Becher
and Joos [3] for the Dirac-Kahler equation, and its extension to the lattice.
Becher and Joos used differential forms endowed with a Clifford product,
introduced previously by Kahler [4], which allowed Graf [5] to prove the
isomorphism, for all dimensions, of the differential forms with this product
and Dirac gamma matrices.

QOur proof is purely based on the algebra of commutators built from the
generators of the Clifford algebra and including all products of the gener-
ators that produce the set known as the Dirac ring (in D = 4), a concept

valid for all dimensions. This is far from trivial for an odd number of di-
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mensions, where the usual representations for the Dirac matrices obtained
from a finite group characterization [6] for the relevant Clifford algebra
introduce an artificial restriction on the ring.

Because of the Graf isomorphism, our proofs apply equally to the dif-
ferential forms with Clifford product. In fact, as it will be evident from the
treatment of the subject, it is valid for any object having a finite number
of indices and properties for exchange as any Clifford algebra.

Some interesting physical questions will be referred to in the text below,
which is organized as follows. In the next section, we introduce the main
concepts and notations, as known in the literature; which will be used in
the following,.

Section 3 is the beginning of the core of the article, where the proof is
given for even dimensions of the relation between the Dirac ring formed
with hermitian matrices (or, in general, objects with definite properties
under transposition and conjugation) and the Lie algebra su(2P/%). The
proof is based on the existence of a subset forming a Cartan subalgebra
under commutation.

Section 4 deals with the case of odd-dimensional spacetimes, for which

we need the previous result and new ones regarding properties under com-
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mutation of the objects with the complementary number of indices with
respect to the Clifford generators. We show there that the relevant Lie
algebra is su(2(P-12) g su(2(0-1/2),

Finally, we discuss our results, compare them, for odd-dimensional
spacetimes, with the representation commonly used, and consider physi-
cal applications in the framework of calculations with particles with spin

1/2.

2 Fundamentals

Let us consider a flat D-dimensional spacetime manifold in which a quadratic
bilinear diagonal form {metric tensor), g, is defined. Clifford algebras are
formed out of a set of D objects, I'*, k = 1,..., D, which we call generators,
related to. the set of spacetime indices (one for each generator) that, given

a product of two generators, satisfy
I .k 4 [h . Th = ggkiks, o (1)

Particularly interesting objects with this property are the Dirac matrices,
appearing in the description of relativistic spin-1/2 particles, y*; closely re-

lated are differential forms, if one purposedly introduces a Clifford product
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between two 1-forms in the following way:
dz™ V dz® = ghPr  dght A dz®, @

where V is the symbol for Clifford product, and the wedge A denotes the
usual Grassmann exterior product. This set was introduced by Kahler
[4] precisely to treat relativistic spin-1/2 particles with differential forms.
In fact, the set of Dirac matrices and the one of differential forms are
isomorphic [5]. See also [1,3].

The product involved in eq. (1) should be associative,
(T .T%).T% =Th (T .T%) =T .T* .T*, (3)

It is a simple exercise to show that the usual matrix product for the Dirac
matrices and the Clifford product defined in (3) for differential forms satisfy
this condition.

In terms of matrices, we take the generators to be hermitian:
. (D)t =T, for all £, (4)

or, equivalently,

(M*)? = I
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This last condition is the convenient one for differential forms (with complex
coefficients) {4,5].
Let us now consider the product of generators. From the definition, we

know that at most D of them can be multiplied; they all form a set
... rerr.eg e, re.rP 2,
TP-3.pD-1.pD  TPH, 5)

where all are taken with convenient complex numerical coefficients in order

to becorme hermitian. For this, we need to take into account the commu-

tation relations of the generators with products of generators. The main

properties are:

1. For a given generator and a product of p generators, all different from

the one given, we have
% .(Th.Th.... .Th) = (-1(D" -T2.....T%).Th.
2. For a given generator, the commutation with a product of p generators
including it obeys

. (Ph.T2 ... . .Dir.pr.ples. . T)

= (=1pYrh.r., ,  .r2.propiea. L Th) . T,
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These properties are proven just by taking into account the change of sign
for commutation between different generators and comparing the results
for both sides in the second case. As a corollary of these properties, we

have for the square of a given product of p generators the result

3.
(Th.Th .  .Th) = (—1)H

where

h(p)=p+1+ (”;1)9(;;—3).
In this expression, we have the combinatorial number which is. valid
for p > 3. With this result, we are able to write factors such that
the square is always +1. Notice the independence from the number

of generators, D.

Examples of hermitian generators are
Y L ) S A (k,im=1,...,D).

In the case of physical interest for D = 4, in a spacetime with metric

gm = _gkk = 15 k= 1,2,3, (10)2 = _(’fk)z = Ia

B R N 5701"7'_, lyiyd, '-70717273;;'
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From the algebraic point of view, these objects, together with a purely
scalar and constant object, the unit under the multiplication used in eq. (1),
constitute a ring, which for D = 4 and Dirac matrices is called the Dirac
ring. We adopt the notation for all dimensions.

The important point is that all these ob ject_s are taken to be different,
or, more precisely, the Dirac ring is an irreducible set.

Another important property we recall for the members of the ring is
what, for matrices, is the null trace. For differential forms, the equivalent
operation was introduced in an article by the present authors and M.A.Rego
Monteiro [7], and was called the scalar value of differential forms, and
represented by the symbol §. It is defined with the heli) of the contraction
operation of a vector with differential forms, e,]|. Applied on a zero-form,

the result of $ is D, by convention. Then, it follows that

${(dz")=8(dx" V1) =¢"|1 =0
(dz* v dz*) = ¢ |dz"$(1) = Dg"".
It follows from its definition that the scalar value of an odd-degree form is

always zero. The scalar value of a Clifford product of an even number of

differentials is 2 combination of metric tensors.
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This completes the characterization of the Dirac ring: for any value
for the spacetime dimension is the set of all objects formed by the genera-
tors of the Clifford algebra and their products, all being hermitian (in the

generalized sense referred to above), and having null trace or scalar value.

3 Clifford algebras in even dimensions and

unitary algebras
In this section, we prove the following

Theorem 1 Given a Clifford algebra with complez coefficients and with an
even number D of generators, the algebra of commutators for the members
of the Dirac ring is ssomorphic to the Lie algebra of the special unitary

group of order 2P/3, denoted by su(2P/?).

Comment. In the preceding section, we have shown that the Dirac ring
is formed by the unit element, the hermitian generators of the Clifford
algebra and all their (hermitian)} products. The heart of the proof, given
the dimension of the ring, being 22, and the fact that the members of the

ring are all hermitian and traceless (with the exception of the unit), is to
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find how many objects commute among them. It is enough to prove that
there are 2P/ — 1 commuting objects, since the algebra is determined by
the number of hermitian, traceless elements (2° — 1) and the dimension of
the Cartan subalgebra [8]. The resulting algebra is, then, su{20/2).

Proof. The proof is based on the results 1. to 3. of the preceding sec-
tion. We must show that there exists one set of commuting objects, by
construction.

Select two generators, for instance, I'* and I'*?. One of them is a
“gpectator” for the commuting subalgebra to be built. The other one will
be a member of the commuting set. Let I'*? be chosen as the spectator.

Consider now the remaining generators, I'*2, ... ,F’;D-i . Take them by

pairs in an ordered way, that is, define
Cl =r*k. rh’ c? =T™. Pb’, cees C{D—z}ﬁ = [*p-2 , Pkp-1

By property 1. in the preceding section, they commute among themselves
and are (D — 2)/2 in number. Now, take all their products; they are
commuting and form a set with a number of members which is the same
as in a “Dirac ring” (excluding the unit) of dimension (D — 2}/2, that is,

card{¢*} = number of commuting ¢* and their products: 2P/2-1 — 1,
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By property 1., 7% . T . I'™ also commute among themselves and with
T'*:. That is, we have another set with the same cardinality as the set {(}.

Then, we have

2(2P/3-1 _ 1) = 2P _ 2

commuting objects; adding I'**, which commutes with the other sets, we

have

207 _941=2P?_1

objects, as it was to be proved.

Another way of looking at the problem is to consider the generators of
the commuting ring, being (D —2)/2 from ¢!, and T*. As a whole, we have
D/2 and the resulting commuting ring is of dimension 2P/2 — 1.

Other sets of commuting objects are made out of I'P+! = o' ---1"’;D
(where a is chosen so that the product is hermitian) and all the ordered
pairs £1 = ™1 .T% ¢D/3 = [ho-1 . T*>, QObviously, the dimension of
any of thése sets is, again, 2°/2 — 1. The sets are different because of the
pairings. There are 2P/2 —1 ways of having a diagonal matrix with an equal
number of +1 and -1 eigenvalues.

Ezamples. (with Minkowski metric diag(+ —+-+~))
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e D = 2: the commuting algebra is trivial and corresponds to choosing

as o3 either 4%, —iy! or —i4%

¢ D = 4: Dirac—Pauli representations:
~3: spectator 4% : spectator
LAT Y e AP e T SR e P v i
S e e s e e I e e P e '
e % e e e S e P e A e o 0
KramerS*Weyl representations:
% =17'7Y
7 iy’
77t iy
O3, —inlyd,
¢ D = 6: Dirac—Pauli representations:

spectator: 7°; generator: ~°

,TB

', iyt
e s TR 1 e e O

S fe b
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Kramers—Weyl representations:

L e T e e e
17 7, iy
e T e e e e e e e

Notice the irrelevant sign for 77, in order to suit the relation {9]

_sD/a1,0 D1

YD1 = YT

4 Clifford algebras in odd dimensions

The theorem for odd dimensions is stated as follows:

Theorem 2 Given a Clifford algebra with complex coefficients, with an odd
number of generators, D, the algebra of commutators for the members of
the Dirac ring is isomorphic to the Lie algebra of the direct product of tweo

special unitary groups of order (D —1)/2, i.e., su(2P-V/2) @ su(2(0-1/3),

Comment. The proof is almost the same as that for even dimensions, but
the argument needs also the result for even dimensions. The procedure
is to show that two complementary commutator algebras, with generators

X and Y, say (without entering on much detail upon indices for the time
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being), are available. The one for X is closed, but the commutator of two
Y generators is always of the X type. The last point is crucial for the proof,
the rest is standard manipulation to convert to generators W¥ that close,
each set, an su(2(°-1/2) algebra.
Proof. Agajn, one should center on which are the members of a commuting |
set of the Dirac ring. Again, for obvious reasons, the unit element is not
considered to establish the algebra of commutators.

For odd dimensions, the product of all generators commute with all the
members of the Dirac ring. This has deep consequences, as we shall show.

Let us take all members of the Dirac ring which do not include a given
operator; to be specific, let ' be this generator. The sét is then equivalent
to the Dirac ring in dimension D — 1 (even}. The algebra of commutators,
corresponding to the set, is, as shown in the preceding section, su(2(P-1)/2),
For the sake of precision, let us call, in general, a member of this set as X,
E=1,...,20°002 1,

The remaining set of the Dirac ring is made out of the complementary
members, in the sense that, given one X}, there is always one this set, Y},
such that

Xy Y =124, (6)
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where I'P+1 is a hermitian object.
The crucial point now is that any two members of the set of objects Y},

(again, 2P/2-! — 1 in number) satisfy a commutator algebra, with

{¥, Yi] = cumXom. A7)

In fact, one can easily show that, for any pair (Y%,Y;), the corresponding
Cum and X, are those for the objects without the index D.

Besides, one sees that
[st YI] = chYms . (8)

as a corollary of the way the objects are made.
By the usual procedures, one can build from X, and Y; two sets of

cardinality 2(2(P-1/2 — 1), that is,
Wi =X, + Y, (9)
which generate two separate su(2(0-1)/?) algebras:

(Wi, W] = cuntin o)

W] = o oy



CBPF-NF-037/92
-15-

Ezample. For D = 3, the explicit example for Dirac matrices has been
built previously [2]. Let us take now the case of Minkowski spacetime with
D=5andg®=1,¢%=-1,k=1,...,4

Generators of the Clifford algebra: 4°, 71, - .._, ‘y‘

Dirac ring:
_ .
+°, iyt (k=1,...,4)
L AR LVl (k< kil=1,...,4)
0yl R (k<l<m,klm=1,...,4)
YOy, Ayt (k<l<m kilm=1,...,4)
777y

Lie algebra generators: take the subset of the Dirac ring not having the

index 4:

1, 1 1
= _70 X; = —'7 yorey K4 = 51733 Xs = 57071: vy Xy = 570731

1. g 1, 1,
Xa = -2-17172, ey Xy = 1572‘73, Xu= 5"7071725 vy Xa3 = 5'707273:

1
X =7V, X5 = 5*7"‘7‘7’13
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Consider now the “complementary” subset:

1 1, 1
=27y = —t'r P Y=gty Y = o,
| 1 _ 1, |
Yo=—7'vy" Yr=37v" e = =-2-'7°'r“'r‘, Y = 37,
1 1, 1, 1,
Yio = -—-2-7"7‘7‘, Yi = —5iv°y", Yaa = 5iv'yY, Yis = —giv'r,

1
Yu——E‘Y’YsYls-—-"'é'W

1t is easy to check that both sets, {X}, {Y,}, k,1=1,...,15, satisfy the

following commutator algebra:

[ Xk, Xi] = tckimXom
[I,k! },l] = icklmxm

[Yi, Xi] = tcim Yon.
The way one recovers an uncoupled set of quantities is by defining
Wi =X, 1Y
Simple algebra shows that

WE W] = icunWi

Wi wr] = o, for all k, 1.
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Notice that the algebras are su(4), as the commutation relations are those
of the Dirac ring with 15 generators, and there is a set of three generators

commuting among themselves.

5 Discussion and conclusions

The main results of this work are apparent in the statement of the theorems.
The procedures are algebraic and direct.

The meaning of the unitary groups involved needs further clarification
from the physical point of view. They embody the symlﬁetry under Lorentz
transformations and rotations of the Dirac equation (and the changes in
the so-called “representation” of the Dirac matrices, which we prefer to
call “picture”, which we prefer to call “picture”).

The algebraic structure allows for a clear definition of the picture of the
matrices representing the Clifford algebra: a picture is associated with a
choice for the matrices forming the Cartan subalgebra.

By the construction, it is natural that the algebras for the (D — 1)
odd-dimensional Dirac ring follows from the even D-dimensional case, by

freezing one generator of the Clifford algebra for the latter.
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The case of even dimensions is not a surprise, it is only clarified the
origin of the need for 2°/? spinors. One could go further and relate the
spinors with the minimal left ideals of the Lie algebra involved; in fact, the
members of the Cartan subalgebra are used to build the idempotents that
project on a given minimal left ideal. We shall leave for a later publication
the discussion of this aspect.

The odd-dimensional case is far more controversial. Most physicists in
the community of high-energy physics and field theory take for granted the
representation provided by a finite-group reasoning (6}, in which the gener-
ators for the Clifford algebra are the D —1 generators 61' the even next lower
dimension and its hermitian product (in order to guarantee the property of
anticommutation for D generator). For those physicists, our development
would represent a curious but rather unnecessary complication. The points

we wish to make are the following;:

1. In dealing with the Dirac equation, the symmetry operations (Lorentz
invariance, rotation invariance, etc.) are alwaysimplemented by auto-
morphisms which come from the exponentiation of the relevant mem-

bers of the Dirac ring. The automorphisms generated by the finite
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group we think are completely unusual for this.

2. The usual representations coming from the finite-group considerations
are not irreducible under inversion of any given coordinate axis. In
the present algebraic form, this inversion exchanges the blocks with

eigenvalue +1 of the product I'P+! = oI . T%. ... . TP,

3. The consequences of the last point translate into different physics
coming from both representations. This has, consequently, possible

experimental confirmation.

4. Last, but meaningful from the mathematical point of view, only for -
D = 3 is the representation coming from the finite group faithful. For

higher odd dimensions this is not so [10,11}.

There is also a sensible difference between the physics resulting from
the representations coming from finite groups and those from our algebraic
considerations. As we have shown, for the case of electrodynamics in D =
3, for instance, there is no induced Chern-Simons term iﬁ the vacuum
pola.rizati;)n at the lowest (one-loop) order of perturbation theory [2]. This
comes about since, in the a.lgebr_g.ic procedure, the trace of an odd number

of Dirac matrices is always zero.
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We have to make also a reference to duality for differential forms. In the
case of odd dimensions, the generators {X;} and {Y¥!} introduced above are
Hodge dual to each other [12], when dealing with differential forms endowed
with a Clifford product. Notice that in their analysis with Dirac matrices,
Brauer and Weyl [13] introduced an operation that closely resembles the
Hodge duality for differential forms. In terms of these, the combinations
W turn out to be selfdual or anti-selfdual.

This is something which is related with the representations induced by
the considerations from finite groups. To be specific, let us refer to the
D = 3 Minkowski space with metric diag(+ — —). It is currently used for

it, from finite groups, the representation
1 = o3, ¥ = iay, ¥* = ioy, (12)
in terms of Pauli matrices. Notice that
Py =iy (13)

Through the isomorphism between matrices and forms [5], this would mean,

in the latter formalism,

dz° V dz' = dz°® A dr' = ids?, (14)



L CBPF-NF-037/92

making equivalent the component of an antisymmetric tensor with the one
of a vector. In this sense, one notes that this forces Hodge duality in an
unsuitable way. |

A last comment refers to the concept of chirality. It is commonly stated
that it is interesting only for spacetimes of even dimension. From the Graf

isomorphism, chirality in odd dimensions refers to the eigenvalue of the

I 0
diagonal matrix PP+, which is always of block form, a , with I

e §

the identity matrix in 2(°~1/? dimensions. One goes from one block to the
other by inverting a single matrix or a coordinate) in the product. By the
way, this handedness (or chirality)} for a reference system translates into
a sense of gyration in space. This is precisely what is referred to, when
chirality is defined, for instance, for massless fermions in D = 4. One talks
about “left-handed” or “right-handed” neutrinos, and the sense of rotation

is the one in the space of dimension two orthogonal to the momentum.
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