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ABSTRACT

The Casimir energy density of a scalar field quantized in
a M'x7? spacetime is calculated. The field is supposed to satisfy
Dirichlet and periodic boundary conditions in the (d-1)- and q-
dimensional submanifolds, respectively. ©On account of this
non~trivial topology, the sign of the Casimir energy is shown to
have the same peculiar and entangled dependence on the number of
finite sides of the hyperparallelepipedal cavity and on the

spacetime dimension, with only one exception which is discussed.
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The motivation- to study the Casimir effect ([1] in
spacetimes with an arbitrary number of dimensions is frequently
attributed to the present development of unifying forces programs
as, for instance, those inspired on the Kaluza-Klein ideas [2] or
superstring theories [3]. It 1is unquestionable that any
higher-dimensional theory should explain why and how a certain
number of dimensions are to be compactified, in order to have their
predictions checkable in the four-dimensional phenomenological
world. Presumably these dimensions are curled out in a volume whose
scale is set by Planck length but the way for implementing a
dynamical compactification scheme is not unique.

Although in the past, several authors [4,5] pointed out
that the Casimir effect could be a plausible explanation of a
spontaneous compactification of extra dimensions, this question is
still far from being widely understood. Inasmuch as the nature of
the Casimir effect is strongly influenced by the topological
features of spacetime, e.g. compactness, and the vacuum
renormalized energy density has been calculated only for volumes
with its boundaries placed in the infinity (6] or for completely
compact space (7], it is certainly needful to analyse the case of
geometric boundary configurations separated by finite distances in
a manifold with some compact dimensions. Our point is that,
choosing these feasible configurations able to measure the Casimir
effect, once the Casimir energy is computed in different manifolds,

the analysis of its nature and magnitude and its confront with
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experimental measurements (in the case of electromagnetism) [8] may
select possible topologies for the curled out dimensions.

In this letter, the vacuum renormalized energy density
associates with a scalar field defined in a D-dimensional flat
manifold, with a M® x T' structure (with d+g=D), bounded by a
hyperparallelepipedal cavity made of perfectly reflecting plates,
is calculated. The result is discussed and compared tc other well
known results.

Several techniques has been developed in the literature
to compute the Casimir energy: the cut-off method, the Green
function method, the dimensional regularization one and the
zeta-function technique {9). It is hopeful that all methods will
necessarily lead to the same result, but a general proof of the
equivalence of all those methods is lacking. For a simple case, an
analytical proof of the equivalence between the cut-off and the
zeta-function methods is given in [10]. Using the same technique
applied in a recent paper [11}, an expression for the Casimir
energy associated to a scalar field, more convenient to carry on
the aforementioned discussion is obtained. Non-flat structures were
studied in [12].

A Hermitian massless scalar field ¢(xP,x’,y’) can be
defined in a D-dimensional M® x T manifold; d is the number of
non-compact and q of the compact dimensions. Let us assumg that the
compact manifold has the topology of a g-torus. This scalar field

obeys the generalized Klein-Gordon equation;
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a 8 8
e — —— - — @ X, = 1.1
[ [axo] i; [8:\:’ 121 ay]] ] (x,Y) (1.1)

and in the (d-1)-dimensional sub-manifold it is confined in the
interior of a rectangular cavity with edges L, L, «... L.
satisfying Dirichlet boundary conditions over the box surface 8,
i.e., ®(x,¥) |an=0. For the g-dimensicnal compact sub-manifold the .
field satisfies periodic b.c, i.e.,

B(x,x, vy, e ¥, e, ¥ = 85Ny, Ly, L, ¥, (1.2)
for V), where the I'/s are the torus cincunference legths.

{¢nn, ¢:u} stands for a short notation of the basis in the space of

solutions of the Klein-Gordon equation where the above b.c. are

imposed, and are given (N is a normalization factor) by:

> -+ q
¢{nn}(x,y) =N exp(-iw{“}xo) exp (ik.x) 71 [exp (imjnyjlcj)] (1.3)
=1

J

where {mm} denotes {n, n, ..., n_, m, m, ... mq}, t’ - 1112,
1/2
2 2 2
o = |+ [ &+ T o+ ...+ [ B (1.4)
{n=} - T -
i 2 q

and

k2 = nl n 2 na n 2 nd_iﬂ' 2
_'i:_ + T + Lo + L *
1 2 d-1

The scalar field can be expanded over this complete

orthonormal set of mode sdlutions as follows:
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so0 = ) [‘{-—} # domp ¥ 2 g} ﬁ-}] (1-9)

{n}

{at=-o

Inserting (1.5) in the free scalar field Hamiltonian and using

orthonormality of the {¢n., ¢:n} basis, it is straightforward to

find
. ‘ .
*

H= w a a + 1/2 1.6
2 h-}[ fout 2 {om} ’] (1-6)
{n} =1 |

{up =- o

The vacuum (no particle state) expected value of the Hamiltonian

operator (1.6) is

4, q) L Z n_m)?
ED (Ll'...'Ld-l' t‘, s ey !q) = T -—I'-.-—- +
1

ntnz.. nd_1=
mimzoc-m = =00
1/2
nznz l'ld_x'l'l.'2 m1n2 mqﬂz (1 7)
+ T, + s F+ I + 7T + st T
2 d-1 1 q .
In the limit
--.' L

2 1’ Lp+2'

and, for simplicity (without loss of generality for our purpose)

assuming L= L, ~ ... ~ Lp= L, and ¢ = ¢ =« ... = !.q = !, we

define the energy density (energy per unit hyperarea), c:““(L,u,
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as a function of the number p of finite length edges and of the

number q of compact space dimensions:

(p,q)
E, 1 1

pra) ==
€ (L, )= D-q-1 (2vn) D=p-q~1 r D=p-q-1
moo(L) —2
l:p'Pi )
-] 0 2
x i dr PP P02 | L2 . [ B, M 4 L+
n.p n=1 L
1¥2° P
mm. om = =0 ¢
1 2 q

2 2 2 41/2
+ 4.. + [np n ] + [ml H] + ... + [mqn ] (1.8)
L z []

This vacuum energy density is clearly divergent. A finite
result can be obtained by using the zeta-function regularization

procedure. The Casimir density enerqgy En is thus given by:

p+q-D i =D X
=P a) = L q Y — D-
CD (L,t) = W fol o {(-1) C: (vm) r [ ) ] X
x A{1,000,1:p%, c0.,p2;D=k) (1.9)

where p={/L, and there are p-k terms (1l,...,1) and g terms

2

(- IO ,pz) as argument of the Epstein function A(ai,az, ..+ s ;25)

(13)], defined as:
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A(a,a,...,a ;28) = Z [ alnf + aan: +ouot akn: ]-B (1.10)

B R eeen =0
(al>0 and the prime means that the term n =ns=...=n =0 has to be
excluded) .

The expression (1.9) is not appropriate to analize the
behaviour of the Casimir energy density and its limit for the very
physical interesting limit p << 1. A more convenient expression can
be obtained by inserting in Eq. (1.9) the integral representation

for the Gamma function,
@«
w® Ir(s) = [ at e ¥t 57 , Re w > 0
0

yielding
p+q-D q ® r
={p,q) _ L [ D/2=-1 kel
ch VL, 8) = = 73 [ dt t Z—o (-1) C: X
o
k [} 2 p-k ] 2 q
(=) (oL ") (L) -]

Performing the sum over k we obtain

prq-D a 4
=(p,q) = L P Dr2=1 - T
g (L,?) = 72 J d‘t t [ [1 |T ] +
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) [ Z,;-me-nzt B J‘E""— ]" [ i_m e-'zpzt]q] (1.11)

which generalizes the result of Ref. {11]. Indeed, for g=0 (no

compact dimensions) we retrieve the expression

-D P
e>? (L) = _-—;':H % | at (vE)™? [ [1 - |—"F ] +
]

- [03(O,e-t) -I—?]p] {1.117)

where 63(0,e-t) is the Elliptic theta function defined as ([14]

-]
2

¢.(z,q) =1+ 2 Zq“ cos (2nz),

n=1
obtained in [11), where the behaviour of E;‘” was carefully
studied.
Doing p=0 in Eg. (1.11) we recover the result obtained in
(8].
| To analize the sign and the magnitude of the Casimir
density energy it is useful to discuss both the limits p « 1 and

p » 1. To this purpose, it is convenient to rewrite Eg. (1.11) as:

I at >3
[v]

P
2
x [03(0,e-t) - I_"F ] [ a:(o,e"’ Y - ] =€ +FE, (1.12)

q p+q-D
q

={p,q) _ ={p,0) _ _L p
p (L,Y) = [ _f[— ] € _(L) 0-at1 /2
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In the limit p « 1 the term E1 goes trivially to zero since Eq.

(1.117) is independent of p. However, the integral contained in Ez

has a p dependence and needs a careful analysis. After some
manipulations Eé can still be written as

o
p+q-D
q

=D D-2
=L g Jd‘c (VT) [ 1&3(0,3-1:) - 1] x

il
I

-g+l D/2
2 20~ n o

x [os(o,e'ffpz, - J'%— ]p (1.13)

where T = pzt.
The absolute value of the integrand is bounded by
D-2 q -
ver [ o,00,e7 -1 ]
which is integrable in (0,w). So, using the dominated convergence

theorem, it follows that

o0

1lim J dt (vT)
p 0

D-2

2 P
[a:(o,e"‘) - 1] [as(o,e"t’p ) = p % ] =

D-2 q -
= [ at (VT) [ 8, (0,e Ty -1 ] = r(p/2) aA(1,...,1;D)

[+}

where now the (1,...,1) argument of the Epstein function consists

of q terms. Then,
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prq-0 q-D
g, = ;nf'm PM [r(nfz) A(l,...,1;D) + O(p)] (1.14)
n

which, from Eq. (1.12), is the dominant contribution to the Casimir
energy density in the 1limit p -» 0 and, therefore, En becones
negative and very large, irrespective of q (qg=0). Note that even
for finite L, the dominant contribution is just the Casinir energy
density corresgonding to all space without boundaries, as found in
(8).

In the limit p» 1 of Egq. (1.12) it is easy to see that
'Ez goes to zero faster than E1' Thus, the sign of the Casimir
energy will be the same of 51 which was analized in [11],
concerning non-conpact spacetimes. There, it was shown that:

i) when p is odd the force is always attractive for all
spacetime dimensions (D);

ii) for p even and not very large, there does exist a critical
spacetime dimensionality (Dc) for which the force is repulsive if
D < D_ and it is attractive if D = D . For p large enough (z 30)
the force is always attractive.

For the compact case, we first consider even values of p,
for which the term Ez in Eqgq. (1.12) is always negative. Thus, if
DzD or p=z30 the cCasimir force will be always attractive
irrespective of the value of p. Otherwise, the force is attractive
in the limit p « 1 and repulsive if p » 1, showing that there will

be a particular value of p for which the system will be in
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When p is odd, the analysis of the nature of the Casimir
force is done remembering that € < 0 for both limits p « 1 and
p » 1, and then showing that Eq. (1.11) has no zero. Indeed, this
is a straightforward result if, in all terms of this Eq., use is

made of the inequality:

CEAIED S SAEE S

Thus, one gets‘fhe conclusion that, for p odd, the Casimir force is
always attractive, irrespective of the values of p, D and q.

So, it was shown in this note that the aforementioned
peculiar and entangled dependence between the force’s nature, the
geometry (p) and spacetime dimensionality (D), still remains in the
case of compact (toroidal) spacetimes with only one exception,
namely: for p even and D < D, the Casimir force is repulsive for
non-compact flat spacetimes (regardless of the magnitude of L),
while, for compact (toroidal) spacetimes, the nature of the force
still depends on the ratio p = ¢/L, being attractive for p « 1 or
repulsive for p » 1. In particular, there will be a value of L for

which the system will be in stable equilibrium.
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