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ABSTRACT

We propose a definition of the chiral Jacobian which uses the
invariance of the generating functional under chiral rotations.
This definition takes into account the contributions of all terms
which after the rotation, get a dependence on the chiral parameter
¢ot. We show that when the Dirac operator has zero ejigenvalues the
presence of fermionic sources gives an additional dependence on «.
Our definition, by considering this c-dependence, reconciles the
¢ -function method of calculating chiral Jacobians with Fujikawa's.
PACS NUMBERS: 10; 11; 11.30. Rd

KEYWORDS: Chiral Jacobians, {-function regularization, singular

Dirac operators
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1. INTRODUCTION

The study of anomalies using the path integral formaliam
began when Fujikawa“Jdiacovered that the fermionic measure is not
invariant under chiral rotations. He calculated the Jacobian
assocliated with these transformations and showed how it was rela-
ted to the anomaly. Since thern these reasults have been rederived
in many ways. In particular, Gamboa-Saravi, Muschietti, Schaposnik

and Solomin®"®

{GSMSS) proposed a very elegant method based on
the {-function regularizationmo and Seeley's“ﬂ expansion coef-
ficients, which permits one to extend in a natural way the evalua-
tion of chiral Jacobians to theories which contain non-Hermitian
operators.

In the GSMSS approach the quadratic fermionic path integral

is regularized as

Jov Dy exp(-< v Dyw >) = Det D = exp{-giéiﬁgl} o’ (1.1)
B
where
t(s,D) = ) Ay° (1.2)
J

is the {-function associated with operator D, hj are the eigenva-
Jues of D and <« > denotes integration. Throughout this paper we

work in Euclidean space.
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Performing the chiral transformation

a(x)r,
v(x)— o v(x) = Q{x)w(x) , (1.3a)
vix)— w(x)e®®?s = yn (x) , (1.3b)

in the path integral (1.1) and ueing its invariance under changes

in the integration variables, we obtain

Det D = J(a) Det(2.D 02_) (1.4)

Thus, the Jacobian J(«) can be definaed as the ratio of two
regularized determinants. This definition treate Hermitian and
non-Hermitian operators on an equal footing.

However, in many cases the operator D has rzero-eigenvalues.
For instance, in QCD D = r“(iOp + A“), where v, are hermitian
Dirac matrices. If Ap belongs to & non-trivial topological sector,
D has zero eigenvalues. 't Hooft“m calculated the zero—eigenmodes
when Au was an instaton or anti-instanton configuration for fer-
miong in the fundamental representation. Jackiw and Rebbi”
studied other representations. If there are zero elgenmodes, equa-

tion (1.4) cannot be applied directly. Ganboa—Saravi, Muschietti

and Solonin“” extended their method to non-invertible operators

defining

Det (D) = Jasmss(a) Det'(nsﬂ 95) . (1.5)
where

Det'D = lim, Dev(D + s, (1.6)

-0 €
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and n is the npumber of zero eigenvalues. Notice that this
o
procedure is not eguivalent to adding a mnall mass € to D from the

beainning™’ . According to (1.5) and (1.8) the mass term is added
after the chiral rotation. For QCD their method, when «(x) is

infinitesimnl, gives"

‘n JESHSS @) = 2 'rdx a(x)[

tr*F F ] +

48n° HY Y

+ 2 2 Jaxel, (x)ralx)e  (x) (1.7)
i=1

where Poi(x) . i=1,...,nn, are the zero eigenmpdes of D and the
trace is over the color matrices.

On the other hand, if one uses Fujikawa s method to calculate
the QCD Jacobian one obtains only the first term of expression
(1.7). Apparently only in the trivial topological sector both
methods give the same result. One wpay think that Fujikawa's
derivation does not hold when there are zero eigenmodes. We belie-
ve that this is not the case. In our notation bhis definition of

the chiral Jacobian is

i J(a) = -2[dx a(x) lim E ol i0r, o P/’ e_(x) , (1.8)
Mo

where { pn } i8 a complete et of eigenfunctions of D. This set is

complete only if one includes the zero eigenmodes. In his calcula-

tion Fujikawa changes the basie vectors pn to plane waves and here

the completness of the set { L } is crucial. In addition, aince
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the number of zero eigenmodes is finite in each topological sec-
tor, no i1l defined expression resulis if they are included in the
sum of equation (1.8).

The purpose of this paper is to show that it is possible +to
reconcile the {-function regularization with Fujikawa’s wmethod by
changing the definition of the chiral Jacobian. Instead of wusing
expression (1.5) we define J(a) by imposing that the generating
functional is invariant under chiral rotations. In case of non-
singular Dirac operator, this requirement reduces to (1.5). Howe-
ver, the presence of external sources 1in the singular Dirac
operator case, induces new non-trivial a-dependent terms in +the
Jacobian.

The lay-out of this paper is as follows. In section Z we cal-
culate the chiral Jacobian in the presence of sources. We show how
the sources get an o-dependence which exactly cancells the second
ters in equation (1.7). Usinz our resulte for constant o we rede-
rive the Atiyah-Singer theorem **°’_ In section 3 we obtain
Fujikawa s result by adding to D a small mass from the beginning.
The discussion of the results and our conclusions are presented in

section 4. Finally, we determine the zero-eigenmodes of the chi-

rally rotated operator in the Appendix.
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> CALCULATION OF THE CHIRAL JACOBIAN IN THE PRESENCE OF SOURCES
AND THE ATIYAH-SINGER THEOREM

The fundamental object in the path integral formaliem is the

generating functional
Z [n,m) = Jov m@’exp{— <¥Dy > + <MW > + < ¥ >} . (2.1)

where for simplicity we have written down only the fermionic
fields. Z[7n.,n] is invariant under changes of the integration va-
riables. In particular, it is invariant under the chiral transfor-

mation (1.3)

Z[7,n] = Z[7.n3;0) = J(a) [Oy Dy exp{- < ¥ D(a)v > +

+ < Hla)y > + < yn(a)>} , (2.2)
with
a(x)rg a(x)r,  _ _ alx)rg a(x)yg
D(a) = & De ; n{a) =2n e ; N{a) = e v .
(2.3)

1f the operator D deoes not have zero eigenvalues it is inver-
tible an so is D(«). In this case the sources can be extracted
from the path integral and their dependence on ¢ cancells. In

order 4o prove this we perform the shift
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wix) — w(x) + [ B(x, v; a) n(y; e)dy ., (2.4a)

v(x) — w(x) + [ n(y; @) B(y, x; a)dy . (2.4b)

where
+
-a(x)r e (x)e_(¥) -a(y)r, -a(x)r -a(y)r
8(x,y;0) = e =Y —B— e = e ® 8(x,y) e s
n
n

(2.4¢)

ie the inverse of D(a) defined in equation (2.3). 7This can be
easily demonstrated using the completeneass of the set { pn(x) } of
eigenfunctions of the non-rotated operator D. Equation (2.2)

becomnes

Z[n.n;al = J(o) exp{ <7 8 n > } [Dv Dy exp{- < ¥ D(e) ¥ > }.
(2.5)

1f we equate Z{n, n; a] with Z{n, n] the source term cancells
and we recover the definition (1.4) of the chiral Jacobian
proposed by GSMSS. Thie result is not surprising. We might have
performed the shift (2.4) with o« = 0, before the chiral rotation.
In thie way we would have extracted the sources from the beginning,
preventing them from getting any c-dependence. The Tfinal result
cannot depend on the order we perform these transforsations. This
simple argument suggets that there may be difficulties when D does
not have an inverse and we cannot extract the sourcee before the
chiral rotation. We are going to show that when 3zero eigenmodes
are present a residual coupling between the sources and the
fermionic fields remains. Thanks to this coupling the sources will

get an o-dependence which has to be taken into account in the de-
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finition of J(o).

Let us calculate expression (2.2) when D has n_ gero elgen-

nodes. As we did before we perform the shift {2.4a,b,c), where

pow the sum in (2.4c) ls over all elgenfunctions with non-aero

eigenvalues. Since the completeness relation is now

no .
T eoil(x) 055 (¥) +§ ps(x) #3(y) = 18(x-y) (2.8)
=1

where 1 is the identify of the inner-space, poi(x) are the zero

eigenvalues of D, and S(x, y; <) satisfies

a(x)r -“(7)75
D(x;a) S(x,y;a) =1 6(x-y) - e A (x,y) e , (2.7)
where n
A y= ¥ (x) o . (y) 2.8
o(x.v = 2 voi{x) f5(¥) (2.8)
i=1

is the projection operator on the sub-space of zero eigenvectors

of D.
The generating functional (2.2) becomes

in.nsa) = J(a) e B I'ﬂw'ﬂg'exp{- < v Dla)y > +
- g - oy,
+ <y e Ln N> ¥+ <7 Ab e ¥ > } . (2.9)

which is the same result that we would have obtained if we had

performed the shift, with a = 0, before the chiral rotation.
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We shall assumc that D and hence D{a) have a complete

orthonormal ast of eigenfunctions { ¢n(a) } and the fermionic va-

riables can be expanded aaul’

n

vix) = a () pos(xio) + ) ag(a) py(x; @) , (2.10a)
=1 J
no

vix) = ) a(e) el (x; @) + ) a(e) p3(x; @), (2.10b)
i=1 J

where pn(x; o) are the eigenfunctione of D(a) with eigenvalue
kj(a), and poi(x; a) are the zero eligenfunctions.
It ie convenient to expand »(x) and n»(x) in terms of the non-

rotated eigenfunctions

n
=]
ni{x) = 2 by PoqlX) +z by py(x) , (2.11a)
i=1 3
nﬂ
Ax) = Y b, eag(x) + ) by eyx) . (2.11b)
=1 J

As usual the path integral weaeure is defined as

n
O

Dy Dy = 121 da . (o) da ; (o) !; da, (o) daj(a) . (2.12)
Substituting equations (2.10a,b), (2.1la,b) and (2.12) into

(2.9) we obtain
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— nﬂ -
2(7,m;0] = J(a) e B n>I 121 daoi(a) daoi(a) g daj(a) daj(a) *

ex{- %‘ [ steragterag(er - Eyle?gie) - ACIENE)

n
v T Fpgtadtogter + Loy(raggt]} ; (2.13a)
1=1
with
n, al(x)y
fy0e) = 3 by [ejlxsay e e (x)d . (2.13b)
k=1
_ - . a(x)7,
Egla) = 3 boy Jeg(x) e py(x; o) ax (2.13c)
k=1
p + a({x)r
2,500 = boy J pos(x: @) e P (x) dx . (2.13d)
k=1
- - — + a(x)r .
Eoge) = ) by Jegy(x) e pi(x; @) dx . (2.13e)
k=1

and, as before, the suppression of a means non-rotated quantities.
The integrals over a_,, aoi are completely decoupled from the
integrale over as, Ej.
The integrale over a.;
change of varlables: aj = aj - tj/lj(a), aj = aj - tj/lj(a), whose

and 301 are trivially done. Making the

Jacobians are equal to the identity, the integrals over a, and EJ

recover the gausslan forluz’amd we finally get,
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_ G 5 m Z.(a) Z,()) o _
Z[n,n;e) = J(a)e T’Det” (D(a))expi s -’——‘L‘ajm 151 £ 5 (0T (),

{2.14)

where Det’(D(«a)}) is egqual to the product of all non-zero eigen-
valuee of D{(a). However, Det (D(2)) only makes sense if some regu-
larization procedure is adopted. We shall define it as GSMSS.

In order to compare the generating functional before and
after the chiral rotation it is neceesary to express the rotated
eigenfunctions in terms of the non-rotated ones. This is not
difficult if we restrict ourselvés to infinitesimal chiral rota-
tions and work to first order in o{x). This ias sufficient to
derive the anosalous Ward-Takahashi identities.

Although

al(x)r a(x)r, -ax)rg —a(x)r

e De e poi(x) = D(a)e °

¢01(1) =0,
(2.15)

we cannot identity exp(—a(x)ra) Poi(x) with poi(x; o). The resason
is that the exp(-a(x)rs) Poi(x) are not orthonormal. We have +to

take linear combinations of them,

<© —a(x)r,
Poy(x; @) = ) Byl e P (x) - (2.186)

=1

In the Appendix we use the Gram-Schmidt orthonormalization proce-

dure to determine Bij(a) 1o first order in o.



CBPF-NF-037/89

-11-
By (o) = 1+ [ dx oj (x) alx) vy £y (x) (2.17a)
Byy(e) = 2 [ dx p (x) a(x) 7, we(x) » § <1 (2.17h)

and Bij(a) = 0 in the other cases. Notice that non-diagcnal
elements are at least of order o.
Let s show that tj(a) and Ej(a) are order a. Since o is infi-

niteeimal

p;(x; a) = 9';(::) + O(a) , (2.18)

and we can rewrite the integrals in expression (2.13b) as
J #3(x) poy(x) dx + 0(a) = O(a) (2.19)

where we used the orthogonality of the eigenfunctions of D. An

analogous demonetration shows that fj(a) is also 9(«). In addition

A(a) = A5+ 0(x) (2.20)
hence _
£ () T (a) .
Y G — = ote®) (2.21)
3 J

can be safely neglected.
The integrals which appear in (2.13d,e) can be easily evalua-

ted using equation (2.16) and the orthogonality of the poi(x).
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i i
Toqle) = 3 bog Big(ed o £ou0e) = ) by Byge) o (2.22)
3=1 =1

where the sums run from 1 to 1 because Bij= 0 for 3 > i.

Since,
5612 = boiz =0,
then
nﬂ
A Z gl ¥ gta) = 131 b, b,y Byj(e) B}, () . (2.23)

Finally substituting (2.23) into (2.14) and using (2.17a) and

(2.21) we obtain

n

2lh.m;al = J(a) e & P pet - (D(a))1 + 2‘2 ! or e 210 By B, -
i=1

(2.24)

J(«) is obtained by equating Z[7,n;a] with Zfn.n). The ex-

pression of Z[#,n] 1s obtained from (2.24) by putting a=0. To

first order in «,

n
- Det” (D ° +
J(a) = ﬁ§€7Tﬁ%E%T [1 -2 2 < ¥Yo1™sYoi ] - (2.25)
i=1

To the same order eguation (1.7) gives

_ Det” (D)  _ ° 4+
Joames (M) = 1 & =1+ 2« ;E: tr Bquyv>+2 2 PL; Y01’
=1 (2.26)
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Inserting (2.26) into (2.25) the contribution from the zero eigen-

podes is cancelled and we obtain Fojikawa' s result.
If « is constant it is easy to consider finite rotations

which can be composed froms infinitesimal ones by iteration

N
J(e) = lim [1 - 2Q ﬁ ] - e 2@ | (2.27)
N-+co
where
_ _ 1 *
Q=c< Py tr F“vap > | (2.28)

is the topological charge. For QCD D(a) = D = r“{iﬂu+ ap) when o
ie constant, bui not necessarily infinitesimal, and hence {pio(a),

pj(a)} = {pio’ pj}. Since rs anti-cosputes with D we can always
choose our =zero-eigenfunctione to have definite chirality,

YePoi = * Poi °F ¥sP0i = Foi - (2.29)
In this case expressions (2.13 b,c.d.e) gjve

Z5(a) = Ej(a) = 0 (2.30a)

and
(n, - mn )a (n, - n )

$o1(®) = by; e i To3 T by © (2.30b)

Substituting (2.27), (2.30 a,b) into (2.14) and equating Zfn,n;al

with Z[7,n) we obtain the Atiyah-Singer theoren

n -n =Q. (2.31)



CBPF-NF-037/89
=14

In our derivation the sources play an important role. GSMSS and
Fujikawa obtain (2.31) in a different way analising only the

chiral Jacoblan.

3. MASS REGULARIZATION

He can understand better how the zero eigenmodes get an
a-dependence if we rederive our results in a different way. In or-
der to -avoid non-invertible operators we can add a small masns to
the Dirac operator from the beginning. This regularization, in
principle, might be problematic since it does not respect the sym-
petries of the theory. For QCD, D = 7“(10p + A“) and it is inva-
riant under global chiral rotations. This invariance is lost if we
substitute D for D+s = De . In spite of this, we are going to =show

that we recover Fujikawa's result when, at the end of the calcula-

tion, we put € = 0.

Zlhm) = Joy oy exp(- < ¥ Dy >+ <hwrrc¥nl L (31

After the chiral rotation Zetﬁ,n] becomes

Z_[7,n50] = J_() fov ﬁﬁ'exp{f < v D_(a)y >+ < Do)y > + < Eh(a)>}.

(3.2a)
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Rith ) (x)r
a(x)r al(x)rg
D () = o 5(0 + €)e . (3.2b)
The operators DE and DE(a) can be inverted
—a —o(x)r -a(x)r
D_"(x,y;a) = S (x,¥y;a) = e S.(x,y) ’ (3.3a)
where (x) ( ,
p.(x)e.(y
S5.(x.¥) = 2 P 1(x) P i(r) + 2 “1———;1——— . (3.3b)

i=1

Shifting the integration variables as in equatione (2.4a,b)
with S (x,v;2) replacing S(x,y;x) we obtain

_ <N s_ n n_
2 [7,n50) = J_(a) e Det” (D_(a))e . (3.4)

n
where « ° is the product of the shifted eigenvalues and we use the

GSMSS prescription to regularize Det'(DE(a)).

=)

<n SE n>
[ ] —

-n_+ 1] .

Ilﬂ

_1_
£0° ol

+
- _ © 4P
b hoi exp <7 2 —i—:ié n >+ Ofe
3 J

(3.5)
As in equation (2.11a,b) b oi ° bbi are the componentgs of the ex-
pansion of » , n in terms of the eigenfunctions of D . Substitu-

-n + 1
ting (3.5) into (3.4) and neglecting 0[ ° ] terms, which will

not contribute in the liwnit € — 0, we obtain
B, _ PP

o
Zlfmiod = Igte) M Boy by exp[<h 2—,;1;-1; n >]Pet (D ()).(3.6)
3



CBPF-NF-037/89
—-16-

Bquating Z_[#,n;a] with Z_[7,7] and taking the limit €—0"

we geot
Det‘(Dg)
J{a) = 1lim (2.7)
+ Det'(De(a))

c-+0

This expression was calculated by GSMSS in reference 8 and it

ie equal to Fujikawa e Jacobian.

4. DISCUSSION OF THE RESULTS AND CONCLUSIONS

Comparing the results of sections 2 and 3 it 1is easy +to
understand the c-cancellation mechanism. After the chiral rotation

we can absorb the exp{a 75) term in the sources and in the opera-
rator D

- — oy

¥y¥n—-ve n=wypn(a) ; ny —mne v=n(a)y;

Ll

— — 012’5 oy
yDy — y e D e L4

]
€|
=
~—
°
r
€

(4.1)

On the other hand, when the Dirac operator D has an inverse, or
when we add to it a small mass
—-oy -0y

-t 5 -1

P — e ple °=Da). (4.2)

Thus, if the sources couple to D-1 the o-dependence cancells. This
is precisely what happens after we perform the fermionic integra-

tion
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fﬂv ﬂ;lexp{r S ; Dy >+ <ny>+< ; n >} = exp{< n Dy >}Det(D)-

(4.3)

However, when zero eigenvalues exist the components soj‘hbj of the
eources 7,n along the zero eigenfunctions 03 decouple cowpletely
froe D (see equation 2.13a). In this case a residual o-dependence
remaine.

We have shown that, independently on how one treats the Dirac
operator, it is poesible to reconcile the r -function calculation
of the chiral Jacobian with Fujikawa’s. This was done by defining
the chiral Jacobian in such a way that the generating functional
with sources is invariant under chiral rotatione. This definition

takes into account all sources of a-contributions for the path in-

tegral and it seems to work in all casec we studied.
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APPENDIX : CALCULATION OF THE COEFFICIENTS By ()
" TO FIRST ORDER IN «

Defining
(a) = & v
Yoi oi , (A.1)

we can rewrite equation (2.16) as

n
=}

Poi(@) = ) Bylo) v (o) . . (A.2)
=1

To determine the Bi j(ot) we use the Gram-Schmidt orthogonalization

procedure:
H (o) =y () (A.3a)
B, («) = vyy(a) - iil < H‘E(G) Yoi®) 2 B (2) .  (A.3b)
k=1 ¢ Hg() By (@) >
Notice that
¥oi(a) = ooy +0() , Hi(e) =g, + o(x) . (A.4)

On the other hand, in equation (A.3b) kX < 1 , thue
+ —
< Hk(a) woi(a) > = O(a) (A.5)

and (A.3b) becomes
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i-1
Hy(2) = ¥g () - ) < Hy (o) w g(a) > H(a) + o(a’) . (A.8)
k=1

Iterating this eguation we obtain

i-1

Hy ()= vou(@) = 3 € wou(@) ¥ga(e) > v () + o(a%) . (A.T)
k=1

¢ BHa) By(e) > = < ¥5y(a) ¥y (@) > + 0% . (A.8)

Finally, normalizing the Hi(a) we obtain the poi(a),

H, () y_,{(a)
Poyle) = i . = ol -+
Jth(ajnita)) f‘vzi(a)wol(a)>
i-1
SRR MY OO CHER R Cop B (A.9)
k-1
From equation (A.9) we read the Bij(a) :
B, (x) = 1 =14 <ot o p >+ 00%)
ii - ol ‘s oi * (A.10a)
<voi(a)w01(a)>
Bij(a) = - ¢ v;k(a) voi(a) »= 2 ¢ p;karspoi> + O(az) . 1> 3,

(A.10b)

Bij(a) =0 , 1«<3j. (A.10c)
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