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I. INTRODUCTION

Systematic studies of the relations between topological models in (1 + 2)D and the phenomenology of
planar theories, as high-Tc supercondutivity have been taken into account since the formulation of the
Chern-Simons theory [1, 2]. One remarkable characteristic extracted from the dynamics of the high-Tc
superconductors is the violation of the P - and the T -symmetries. This fact emphasizes its planar nature.
As a matter of fact, topological models originated from Chern-Simons term are restricted to describe
objects living in (1 + 2)D. This aspect has motivated the study of extensions of planar gauge theories
and the mathematical properties underlined, such as the fractional statistics [3]. Relevant extensions are
the complex Maxwell-Chern-Simons (MCS�) model in (1 + 2)D [4] and, the complex Maxwell-Chern-
Simons-Proca theory(MCSP�). The planar scenario and the dynamical mass generation of these two
models were largely exploited in Ref. [5]. In this context, the physical investigation of topological
dynamical aspects of complex matter vector �elds may still be better explored, specially in (1 + 3)D
high-energy physics as well as in condensed matter systems.
The concept of topological models in (1 + 3)D has been �rstly pointed out by Cremmer and Scherk

[6], and Kalb and Ramond [7]; we refer to this class of models as the CSKR model. In these works,
a topological term in (1 + 3)D is introduced which is an extension to the well-known Chern-Simons
term in (1 + 2)D. This topological CSKR term introduces a direct coupling between a 1-form gauge
�eld and another 2-form gauge �eld without an e�ective contribution to the energy and the momentum
of the model; it however gives a mass contribution at tree-level. The CSKR, as a topological model,
is another candidate to generate mass without introducing a Higgs scalar �eld into the Lagrangian.
So, gauge symmetry is preserved and a massive spin-1 boson appears. Consequently we can inquire
whether a charged spin-1 vector boson could be incorporated into the spectrum of the CSKR model.
Incidentally, vector-tensor �eld models have been largely studied, particularly in the context of N = 2
supersymmetric models [8]. On another hand, the contraction of a Chern-Simons term with a �xed vector
has been proposed in order to build up a Lorentz-violating model to describe astrophysical e�ects and
cosmological new perspectives (possibly from geometrical origin) due to the variation of the universal
constants [9]. Indeed, recent works have suggesting models to study Lorentz violation: D. Colladay
and Kostelecký [10, 11] suggested a general Lorentz-violation extension of the Standard Model including
CPT-even and CPT-odd terms in (1 + 3)D. They have obtained that the extension presents a gauge
invariance and conserved energy-momentum tensor while covariance under particle rotations and boosts
is broken. Coleman and Glashow [12, 13] have also investigated tiny non-invariant terms introduced into
the standard model Lagrangian in a perturbative framework. The e�ects of these perturbations increase
rapidly with the energy for a preferred frame what implies in a Lorentz-violation of the system. The
occurrence of the dynamical breaking of the Lorentz symmetry in Abelian vector �eld models with the
Wess-Zumino interaction have been explored by Andrianov and Soldati [14, 15]. On the other hand,
Carrol, Field and Jackiw [16] have demonstrated that ordinary Chern-Simons terms, studies previously
in (1+2)D, can couple to dual electromagnetic tensor to an �xed and external four-vector. The e�ects of
this Chern-Simons terms in Lorentz and CPT-violation have also been treated by Jackiw and Kostelecký
[17].
The aim of this work is to study a charged vector-tensor matter �eld model based on the complex

extension of the CSKR model. We build up a full Lagrangian model where all the possible invariant
terms are included. Furthermore, we add up a local U(1) symmetry in order to have an interacting
charged vector-tensor �eld model where a gauge �eld A� mediates the interaction. In this model, the 1-
and 2-form �elds can coexist and interact with each other by means of a topological term in (1+3)D. To
check the consistency in a quantum �eld-theoretic sense, we discuss aspects such as causality, unitarity
of the excitation spectrum. To this aim, we take into account the local U(1) interaction formulation and
we will analyze the vacuum states in the low-energy limit.
Due to the vector nature of the order parameter of the model, the ground state is identi�ed with

a constant four-vector (we call b�) which implies an anisotropy of the vacuum state as a by-product
and naturally induces Lorentz symmetry violation. This vacuum anisotropy has recently received much
attention in connection with astrophysical phenomena [18]. We study the role played by the vector b�
and its consequences to the physical degrees of freedom described in the spectrum of the model. We also
explore the possible consistent (no ghost and no tachyon) choices of this vector background.
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The outline of our paper is as follows: in Section II, we introduce the full global U(1) vector-tensor
matter �eld model and obtain the equations of motion, the Noether and the topological currents. In
Section III, using the hint of accommodating the two kind of currents in a duplet, we compute the
propagators, poles and the physical consistency relation obeyed. In Section IV, we switch on an interacting
gauge �eld and introduce a local U(1) symmetry. We study the SSB mechanism and conclude that the
potential achieves its minimum for a non-vanishing vacuum expectation value of the charged vector matter
�eld. We adopt to work with the unitary gauge and, in Section V, we study the spectrum and consistency
relations for the gauge-KR sector. In Section VI, the Higgs-KR sector is analyzed. Finally, in Section
VII, we discuss and comment our results.

II. THE GLOBAL U(1) VECTOR-TENSOR FIELD MODEL

Based on the CSKR model, we propose to study a full U(1) charged vector-tensor matter �eld model
[6, 7] where we have also included the topological terms. It can be written down as

L =
1

3
G�
���G

��� � 1

2
F �
��F

�� � (@�B
�)�(@�B

�) + 2(@�H
��)�(@�H��) +

+�2B�
�B

� + �(B�
�B

�)2 � �2H�
��H

�� +m�����B�
�@�H�� +m�����B�@�H

�
�� ; (1)

where B� and H�� are the matter vector and tensor �elds respectively, � and � represent the mass term
parameters of the �elds, � represent the self-interacting parameter and m the topological mass1. The
�eld strengths can be de�ned by

G��� = @�H�� + @�H�� + @�H�� ;

F�� = @�B� � @�B�: (2)

We observe that the topological term is a mixed one formed by B� and H�� in 4D as the term studied
in the Ref. [6, 7]. Consequently, m is regarded as a topological mass. We also consider a potential term
that de�nes the quadratic mass parameters �2 and �2. The conserved matter current J� stemming from
the global U(1) symmetry is given by,

J� = i(B�F
��� �B�

�F
��)� i(H�

��G
��� �H��G

����) +

+im�����(B�
�H�� � B�H

�
��) + i[B�(@�B

�)� �B��(@�B
�)] +

�i[(@�H��)
�H�� � (@�H��)H

���]: (3)

The coupled Euler-Lagrange equations are

2B� = ��2B� � �(B�
�B

�)B� �m�����@�H��;

2H�� = ��2H�� +m�����@�B�: (4)

According to the symmetry of the Lagrangian (1), we notice the occurrence of a B4-interaction term that
determines a anti-symmetrized identically conserved topological current of type,

J�� =
1

2
�����@�B�: (5)

Its associated topological-vector-charge gives rise to �vector solitons� solution whose value may be re-
garded as a quantum number. Indeed, this topological current induces directly the nonlinear behavior
on the vector-matter �eld sector. The investigation of the nonlinear dynamic and the non-trivial con�g-
uration of the �elds with anisotropic energy in (1 + 2)D will be explored in a forthcoming work.

1 We also adopt the metric (+;�;�;�).
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III. THE SPECTRUM ANALYSIS

In order to verify the physical spectrum, we rearrange the Lagrangian (1) in a linearized form, or

L = VtOV; (6)

where O is a unitary wave operator and we represent V as a vector-tensor duplet or,

V =

0
@ B�

H��

1
A ; (7)

To obtain the propagators by means of the usual mechanism, we take the O�1 using the usual product
algebra of the ordinary longitudinal, transverse and spin projector operators, which respectively are !�� ,
��� and s��� = �
���@
 . In addition, we also have the anti-symmetric longitudinal and transverse spin
four-indexed projector operators written down as,

���;�� =
1

2
(�������������); !��;�� =

1

2
(���!������!��); ���;�� =

1

2
(�������������); (8)

which implies a closed algebra, such that

���;�� !��;�� s���

���;�� ���;�� 0 s���

!��;�� 0 !��;�� 0

s��� s��� 0 �2���

,

where we have obtained that ���;�� = !��;�� + ���;��. We obtain the propagators, in the momentum
space, which can be written down as

< B�
�; B� > =

i

(k2 � �2)
!�� +

i(k2 � �2)

(k2 � �2+)(k
2 � �2�)

��� ;

< B�
�; H�� > = < H�

�� ; B� >=
im

(k2 � �2+)(k
2 � �2�)

s���;

< H�
�� ; H�� > =

i

(k2 � �2)
!��;�� +

i(k2 � �2)

(k2 � �2+)(k
2 � �2�)

���;��;

(9)

where,

�2� =
�2 + �2 + 2m2 �p(�2 + �2 + 2m2)2 � 4�2�2

2
; (10)

which can be easily veri�ed to be real and positive. As a consequence, we observe that the poles k2 = �2,
k2 = �2, k2 = �2+ and k2 = �2� indicate the absence of tachyon states. Another point is the positivity of
the norm of the states veri�ed from the analysis of the residues of the propagators obtained. To do that,
we take the transition amplitudes considering the doublet "vector-tensor current", which can be written
down as,

J =

 
J�

J��

!
; (11)

where J� is the usual Noether current, and J�� is the current given in the eq. (3) and (5) which is
conserved by de�nition.
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We observe that there are two dynamical physical poles, both describing massive particles speci�ed by
�2+ and �2�. The transverse topological sectors are non-dynamical. We obtained that the propagators
< B�

�; B� > and < H�
�� ; H�� > have the same poles and consequently the same particles. The crossing

ones have no dynamics. We can see an order in the spectrum of the model which obeys the relation

�+ > � > � > ��; (12)

resulting in a consistent physical model. We observe that to perform the analysis of the degrees of freedom
in 1 + 3 dimensions it was necessary to take the antisymmetric topological current J�� given in (5) to
complete a doublet with the usual vector one (J�). Indeed, the topological current has induced directly
the nonlinear behavior of the vector-matter �eld sector.

IV. THE LOCAL U(1) THEORY AND SSB

To introduce interactions into the model representing by the matter Lagrangian (1), we take as local
the symmetry phase, as the usual method, or

B
0

� = e�i�(x)B�; and H
0

�� = e�i�(x)H�� : (13)

In this way the symmetries are restored, introducing the invariant Lagrangian written as,

Lint =
1

3
G����G��� �

1

2
F�
��F�� � 1

4
f��f�� � (D�B

�)�(D�B
�) + 2(D�H

��)�(D�H��) +

+m�����B�
�D�H�� +m�����B�(D�H��)

� + �2B�
�B

� + �(B�
�B

�)2 � �2H�
��H

�� ; (14)

where D� = @� + ieA� is the covariant derivative. The above Lagrangian describes an interaction model
between the matter �elds B�, H�� and the gauge �eld A�, where we de�ne

G��� = D�H�� +D�H�� +D�H�� ; F�� = D�B� �D�B�; and f�� = @�A� � @�A�:
(15)

The new conserved current can be written down as,

@�f
�� = J � = i(B�F��� �B�

�F��)� i(H�
��G��� �H��G����) +

+im�����(B�
�H�� �B�H

�
��) + i[B�(D�B

�)� �B��(D�B
�)] +

�i[(D�H��)
�H�� � (D�H��)H

���]; (16)

where J � is the covariant matter current.
As we have seen, the covariant interacting vector-tensor model described by the Lagrangian (14) intro-

duces a U(1) gauge �eld, A�. To explore the behavior of these �elds at low-energy phenomenology, we
take the spontaneous breaking of gauge symmetry mechanism. As the model carries vector and tensor
�elds as matter degrees of freedom, the discussion of the SSB becomes subtle. The quartic self-interacting
non-linear term of the matter �eld B� in the Lagrangian (14) could play a role similar to the Higgs �eld,
but with a vector nature. The �(B�

�B
�)2 does not spoil the invariance of the Lagrangian under the group

of the local U(1) transformations. So, the condition of a minimum of the energy (E) can be obtained
taking the minimum of the potential energy (V ), or

dE

dB�

=
dV

dB�

= �2B�
� + 2�(B�

�B
�)B�

� = 0; (17)
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where it is analogous to the B�
� term, recalling that �2 is a mass parameter. In this case, the situation

where �2 < 0, and � > 0, introduces a non-trivial vacuum, and it follows that the energy is a minimum
at,

B�
�B

� = b�b
� = b2 = ��

2

2�
u2; (18)

where we observe that, in this case, we require that b2 be a constant 4-vector parameter such that

��2

2� > 0. In fact, we observe that the VEV for the �eld B� is given by,

h0jB�j0i = b� =

r
��2
2�

u�; (19)

where u� is a unitary vector which lying in a �xed direction in the space-time. In turn, it breaks the
Lorentz symmetry, and due to this arbitrariness we have to choose amongst the possible types of vector:
u2 = 1 (time-like), u2 = �1 (space-like) or u2 = 0 (light-like), analogous to the case studied in the
Ref. [20]. As we are interested to deal with non-trivial con�gurations of the �elds, we exclude the
light-like possibility. Consequently, we reach a non-trivial vacuum solution for an energy E which breaks
spontaneously the U(1) local symmetry, and also violates the Lorentz symmetry. We emphasize that
the Lorentz violation came along as by-product e�ect of the internal symmetry breaking. The Lorentz
violation has received much attention due to possible astrophysical and condensed matter e�ects [9, 21],
which deserves a more deep analysis. In this work, we are going to verify the mass spectrum of this
model. To this purpose, we begin by observing that the system under consideration has an in�nite set of
vacuum states, corresponding to points on a circle of radius given by the Eq. (19) posed on the complex
plane of the �eld B�. So, we can decompose the complex �elds into components and we shift the �eld
B� along the real axis (analogous to the Higgs mechanism). So we have

B� ! B� + b� = X� + iY� + b�; and H�� ! P�� + iQ�� ; (20)

so, we can express the potential term as,

V = �(B�
�B

� � b2)2 � �b4 � �2H�
��H

�� ; (21)

which are substituted into the Lagrangian (14), whose expansion we �nd,

Lbroken =
1

3
P���P

��� +
1

3
Q���Q

��� � 1

2
X��X

�� � 1

2
Y��Y

�� � (@�X
�)2 � (@�Y

�)2 + 2(@�P
��)(@�P��)

+2(@�Q
��)(@�Q��)� e2b2A�A

� � 1

4
f��f

�� + 2e(b�A�)(@�Y�)� 2e(A�b�)(@�Y�) + 2e(@�Y
�)(A�b

�)

+2m�����X�@�P�� � 2em�����b�A�Q�� + 4�b�b�X
�X� � �2P��P

�� � �2Q��Q
��

+higher order terms; (22)

where X�� , Y�� , P��� and Q���, are the �eld-strengths of their respective real components of 1- and
2-form �elds written in the de�nitions Eq. (20). We observe that the Lagrangian (22) is non-diagonal,
what become a subtle computation. The terms 2e(b�A�)(@�Y�), �2e(A�b�)(@�Y�) and 2e(@�Y

�)(A�b
�)

can be absorbed by carrying out the following �eld re-de�nitions,

A� ! A� � q�(@�Y
�) + q�(@

�Y�) + q�(@�Y
�); and f�� ! f�� + 
Y�� +���(@�Y

�); (23)

where q� , 
 and ��� are operators that can be easily found by manipulating (23) and (22), which can be
de�ne as

q� =
b�

eb2
; 
 = q�@�; and ��� = q�@� � q�@�: (24)

So, the resulting Lagrangian (22) is non-gauge-invariant because the Lorentz symmetry is broken. It
breaks translation due to the presence of the 
 operator, and it breaks rotation by virtue of the ���
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operator present in the new de�nitions in Eq. (23). Nevertheless, we can eliminate the Y� �eld by means
of a gauge choice, picking a particular gauge parameter in the U(1) phase transformation; so,

X
0

� = X� � �Y�;

Y
0

� = Y� � �X� +�b�;

(25)

where � is an arbitrary gauge parameter. In fact, we can gauge away the Y� �eld choosing a particular
gauge, bearing in mind the unitarity condition on the particle spectrum. Then A� �eld acquires mass due
to the presence of the scalar �eld-parameter � = � in its longitudinal mode. This describes the associated
Higgs-Mechanism for a complex vector. It can be seen through the following re-de�ned transformations,

A� ! A� � @��; f
0

�� = f�� : (26)

Then, the Lagrangian (22) can be rewritten in the absence of the interaction terms as,

Lbroken =
1

3
P���P

��� +
1

3
Q���Q

��� � 1

2
X��X

�� � (@�X
�)2 + 2(@�P

��)(@�P��) + 2(@�Q
��)(@�Q��) +

� e2b2A�A
� � 1

4
f��f

�� + 2m�����X�@�P�� � 2em�����b�A�Q�� + 4�b�b�X
�X� +

��2P��P�� � �2Q��Q
�� : (27)

In order to extract the physical content of the Lagrangian (27) one can split it in two sectors,

Lgauge�KR =
1

3
Q���Q

��� � 1

4
f��f

�� + 2(@�Q
��)(@�Q��)� e2b2A�A

� � 2em�����b�A�Q�� +

��2Q��Q
�� ; (28)

LHiggs�KR =
1

3
P���P

��� � 1

2
X��X

�� � (@�X
�)2 + 2(@�P

��)(@�P��) + 2m�����X�@�P��

+4�b�b�X
�X� � �2P��P

�� ; (29)

where we can observe from the Lagrangian (28) that the gauge �eld only interacts, via topological term,
with the imaginary part of the tensor KR �eld. We can also observe that the mass of the A� �eld
depends on the vector b�, the broken parameter, and on the topological mass as well. On the other
hand, the Lagrangian (29) indicates that the vector b� contributes to the mass of the real part of the
original neutral meson �eld. We emphasize that the appearance of this new boson �eld does not prescribe
any new symmetry group in the model. To verify the consistency, we are going to compute the spectral
analysis separately.

V. THE SPECTRUM OF THE GAUGE-KR SECTOR

A remarkable feature of the Lagrangian (28) is that it contains a massive gauge vector �eld (Proca)
that interacts with a 2-form KR �eld. An analysis of the physical degrees of freedom requires to deal with
the unitary gauge (25). Then, taking that the �elds are well-behaved asymptotically, we can rearrange
the Lagrangian considering a mixed doublet de�ned asUt = (A�; Q��). So, the Lagrangian Lgauge�KR =
U

tOU where O can be easily written down from the Lagrangian (28). From the inverse operator, O�1

we can obtain the propagators, in the momentum space, as

< A�; A� > =
i

(k2 + e2b2)
��� +

i(k2 � �2)

(k2 � �2+)(k
2 � �2�)


�� ;

< A�; Q�� > = < Q�� ; A� > =
im

(k2 � �2+)(k
2 � �2�)

����; (30)

< Q�� ; Q�� > =
i

(k2 + e2b2)
���;�� +

i(k2 � �2)

(k2 � �2+)(k
2 � �2�)


��;��;
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in this above expressions we have used the longitudinal, ��� , and transverse, 
�� and ����, given by,

��� =
b�b�

b2
; 
�� = ��� � b�b�

b2
and ���� = �
���b
 : (31)

whose multiplicative table looks as below:


�
� ��

� ��
��


�� 
�� 0 ����

��� 0 ��� 0

���
� ���

� 0 �b2
��

We can also de�ne the anti-symmetrized longitudinal and transverse operators as,


��;�� =
1

2
(
��
���
��
��); ���;�� =

1

2
(�������������); ���;�� =

1

2
(�������������);

(32)
which implies the closed product algebra:


��
;�� ���

;�� ���
�


��;�� 
��;�� 0 ����

���;�� 0 ���;�� 0

���� ���� 0 �b2
��

,

where in addition we can observe that ���;�� = ���;��+
��;��. The mass values, �2�, are easily obtained
as,

�2� =
e2b2 � �2 �p(�2 + e2b2)2 + 8m2e2b2

2
to the case where u2 = 1

(33)

�2� =
�e2b2 � �2 �p(�2 � e2b2)2 � 8m2e2b2

2
to the case where u2 = �1:

For the case u2 = 1 (time-like condition), only �+ de�nes a physical excitation. �� is a tachyonic
excitation. On the other hand, to u2 = �1 (space-like condition), both �+ and �� are physical excitations
for the restrict values of the topological mass,

m <
�2 � e2b2p

8eb
; (34)

where b = jb�j. Observe that � cannot be zero, and � > ejbj, resulting that the Lorentz symmetry
breaking implies an anisotropy of the space-time is realized as a mass generation on the gauge �eld,
similar to the Higgs mechanism whose consistency is ensured by the presence of a mass term for the
2-form H�� �eld.

VI. THE SPECTRUM OF THE HIGGS-KR SECTOR

Now, we are going to verify the physical spectrum of the Higgs-KR sector. In a similar way as in
the previous case, we are also going to analyze the consequences of the breaking on the spectrum of the
Lagrangian (29). We can verify that due to the presence of an anisotropic space-time, the X� neutral
vector �eld is deformed, which implies non-de�ned propagator poles. Therefore, the physical states can
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be only obtained by considering the projections of the X� �eld along, and perpendicular to the b� vector.
Then de�ning the W� and Z� as the parallel and transverse projections of the X� �eld respectively, or

W� =
b�X

�

b2
b� (35)

Z� = X� � b�X
�

b2
b�: (36)

We can perform rotations at each point in deformed-space where the doublet Ut = (X�; P��) can be
taken as,

U
t = (X�; P��)) fU(W )

t
= (W�; P��)longitudinaljW� =

b�X
�

b2
b�; Z� = 0g (37)

U
t = (X�; P��)) fU(Z)t = (Z�; P��)perpendicular jZ� = X� � b�X

�

b2
b�; W� = 0g (38)

The doublets U(W ) and U(Z) are orthogonal and must be chosen non-simultaneously. Then we can now
to rewrite the Lagrangian (29) for each one of the above situations, which for the U(W ) case as yields as

L(W ) = �P��(���;��2)P���W�(�
��
2)W�+4�b

2W�W
���2P��P��+m�����W�@�P���m�����P��@�W�;

(39)
hence, we can note that by substituting the rede�nition of the W� �eld (35) into (29) the cross massive
term 4�b�b�X

�X� is transformed to 4�b2W�W
� and so given a mass term form. On the other hand, we

can choose the X� �eld perpendicular to b�, where one can write (29) in the U(Z) case. We have that

L(Z) = �P��(���;��2)P�� + Z�(�
��
2)Z� � �2P��P

�� +m�����Z�@�P�� �m�����P��@�Z�; (40)

where the mass term 4�b�b�X
�X� is gauged away. In order to verify the degrees of freedom of these two

cases, we are going to deal with the Lagrangian expressions (39) and (40), and use the analogous method
of the matter-gauge case. So we now have two operators: O(W ), O(Z) and their respective inverses
whose are straightforward obtained. The associated to O(W )�1 propagator is obtained as,

< W�;W� > =
i

(k2 � ��2)
!�� +

i(k2 � �2)

(k2 � ��2+)(k
2 � ��2�)

��� ;

< W�; P�� > = < P�� ;W� >=
im

(k2 � ��2+)(k
2 � ��2�)

s���; (41)

< P�� ; P�� > =
i

(k2 � ��2)
!��;�� +

i(k2 � �2)

(k2 � ��2+)(k
2 � ��2�)

���;��;

where we have de�ned

��2� =
��2 + �2 + 2m2 �p(��2 + �2 + 2m2)2 � 4��2�2

2
(42)

and �� = 4�b2. In same way, for the perpendicular wave operator O(Z)�1 result in,

< Z�; Z� > =
i

k2
!�� +

i(k2 � �2)

k2(k2 � �2)
��� ;

< Z�; P�� > = < P�� ; Z� >=
im

k2(k2 � �2)
s���; (43)

< P�� ; P�� > =
i

(k2 � �2)
!��;�� +

i

(k2 � �2)
���;��;

where �2 = �2 + 2m2. In order to guarantee unitarity, we must have the real part of the current-current
amplitude greater than zero. We can observe from the propagators (41), that the longitudinal sectors of



CBPF-NF-037/03 9

the �elds W and P exhibit no tachyons and they are not dynamical. On the other hand, the transverse
degrees of freedom of the non-mixing terms are physical as far as we assume in the expression (42) that
��2+ > ��2�, ��

2
+ > ��2 and ��2 > ��2�. As a consequence, the L(W ) has a pole k2 = ��2+ for the propagator

< W�;W� >T , and a pole k2 = ��2� for the propagator < W�� ;W�� >T ; they are dynamical physical
excitations.

VII. CONCLUSIONS

In this paper, we have presented a charged vector-tensor (CSKR) matter �eld model which shows
a connection between vector (1-form) �eld B� and an antisymmetric tensor (2-form) �eld H�� via a
topological interaction in (1 + 3)D. Furthermore, it presents a global U(1) symmetry. We have shown
that the introduction of a self-interacting B4-type potential in Lagrangian (1) is necessary to de�ne a
topological 2-form (tensor) current (5). Thus, we propose a vector-tensor current which is a doublet
where it accommodates the ordinary Noether current J� along with the topological 2-form current J�� .
With this procedure, we can obtain the physical spectrum of the model in a direct way, where we verify
the existence of two distinct simple physical (non-tachyonic and non-ghost) poles with masses �+ and ��
for the transverse sectors. We emphasize that, in spite of the peculiar form of the model, the longitudinal
ones decouples. The propagator poles include topological (�2) and Proca (�2) mass parameters what
implies that the very same physical degrees of freedom are present in the propagators of the 1-form B�

(KR) �eld and the 2-form H�� (KB) �eld. In the charged case, we introduce a gauge interacting �eld A�

and we explore the low-energy dynamics of the model, by studying the spontaneous symmetry breaking
(SSB) mechanism. The quartic form of the potential energy of the vector-tensor matter �eld indicates
the SSB mechanism could take place for this �eld. Only the vector (1-form) B� (KR) �eld can reach
the very minimum of energy of the model, consequently it is responsible for SSB mechanism. On the
other hand, the vacuum energy value of this �eld naturally violates the Lorentz symmetry which �xed
a vector deviation to the minimum and implies contributions to the splitting of the mass spectrum. We
observe that the possibilities of the �xed vector has to be of physical consistency preventing ghost and
tachyon degrees of freedom, and so following in an analogous way the classi�cation obtained in Ref. [20].
The e�ects of Lorentz-violating terms have recently been an object of study due to astrophysical e�ects
and to condensed matter [9, 21]. We have studied the contributions of the �xed vector b� to the mass
at tree-level, where to this purpose we suitable introduce the unitary gauge and we rede�ne the �elds
and parameters in this e�ective resulting model. We remark that the �eld Y� is gauged away and we
consequently recover the usual gauge transformation of the dynamical elements of the model. We obtain
two independent dynamical systems: one describes a model where a KB-�eld interacts with a gauge �eld;
and another a neutral KB-�eld interacting with the �Higgs� vector �eld. We emphasize that this model
presents a new neutral vector particle without the introduction of an �extra� U(1) as it has been largely
explored in the literature. Indeed, many phenomenological works have been proposed with the aim of
suggesting and extra symmetry to account for discrepancies in the Standard Model, particularly the Z�Z 0

mixing [29]. In astrophysical models coming from high energy considerations, it has been suggested that
non-baryonic dark matter could have exotic astrophysical origin where a possible mirror matter described
by extra symmetries [30, 31] emerges as an interesting possibility. In our case, an extra and/or mirror
matter has a topological origin as it was suggested in the Ref. [30] and the Lorentz violation could
imply optical astrophysical e�ects that in�uence the red-shift deviations, the anisotropy of the Cosmic
Radiation Background, and possibly masks the observational e�ects of topological defects. Finally, we
analyze the spectrum of the two independent dynamical models obtained after the SSB mechanism. In
the gauge-KR sector, we obtain the condition on the mass parameters and the �xed vector so has to have
a physically consistent condition where the mass term to the 2-form matter �eld is crucial. We obtain
that the longitudinal part has no dynamics. The result is that this sector could represent the e�ective
dynamics of a charged spin-1 particle. On the other hand, the Higgs-KR sector can represent the dynamics
of a massive neutral particle that, due to the Lorentz violation, can only be analyzed in the longitudinal
and transverse projected degrees of freedom. Indeed, from another way this particular feature of Lorentz
violation is emphasized in its classical electromagnetic version[32], and in the perturbation studies of
the model[33]. We obtain the conditions on the mass parameters (topological and not) to get physically
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consistent degrees of freedom at tree-level. In this sector, the �xed vector b� dictates a preferred direction
in space. We can conclude to given the perspective to compute a dimensional reduction of the KR model
from (1 + 3)D to (1 + 2)D, where we can conjecture the existence of charged �vector-solitons� derived o�
topological solutions in (1 + 2)D, which is the study of a forthcoming work [19].

VIII. ACKNOWLEDGMENTS

The authors would like to thank J.A. Helayël-Neto for the suggestion of the subject and discussions.
A.L.M.A Nogueira is acknowledged for comments and suggestions. LPC would like CCP-CBPF for the
kind hospitality. ALAP and WCS are grateful to CAPES and CNPq respectively for their Graduate
fellowships.

[1] A. Linde, Rep. Progr. Phys. 42, 389 (1979).
[2] S. Deser, R. Jackiw and S. Templenton, Phys. Rev. Lett. 48, 975 (1982).
[3] F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982).
[4] J. Schonfeld, Nucl. Phys. B185, 157 (1985).
[5] O.M. Del Cima and F.A.B. Rabelo de Carvalho, Int. J. Mod. Phys. A10, 1641 (1995).
[6] E. Cremmer and J. Scherk, Nucl. Phys. B72, 117 (1974).
[7] M. Kalb and P. Ramond, Phys. Rev. D9, 227 (1974).
[8] N. Dragon and S.M. Kuzenko, Phys. Lett. B420, 64 (1998);

I. Buchbinder, A. Hindawi and B.A. Ovrut, Phys. Lett. B413, 79 (1997);
P. Claus, B. de Wit, M. Faux and P. Termonia, Nucl. Phys. B491, 201 (1997);
P. Claus, B. de Wit, M. Faux, B. Kleijn, R. Siebelink and P. Termonia, Phys. Lett. B373, 81 (1996).

[9] G. Amelino-Camelia, The three perspectives on the quantum-gravity problem and their implications for the
fate of Lorentz symmetry, gr-qc/0309054;
O. Bertolami, R. Lehnert, R. Potting and A. Ribeiro, Cosmological acceleration, varying couplings, and
Lorentz breaking, astro-ph/0310344;
O. Bertolami, Threshold E�ects and Lorentz Symmetry, hep-ph/0301191;
E.C. Vagenas, JHEP 0307, 046 (2003);
J. W. Mo�at, Int. J. Mod. Phys. D12, 1279 (2003);
S. Das and G. Kunstatter, Class. Quant. Grav. 20, 2015 (2003);
J.D. Barrow, Phys. Lett. B564, 1 (2003);
P.C.W. Davies, T.M. Davis and C.H. Lineweaver, Nature 418, 602 (2002);
K. Greisen, Phys. Rev. Lett. 16, 748 (1966);
G.T. Zatsepin and V.A. Kuzmin, Pisma Zh. Eksp. Teor. Fiz. 4, 114 (1966).

[10] D. Colladay and V.A. Kostelecký, Phys. Rev. D58, 116002 (1998).
[11] D. Colladay and V.A. Kostelecký, Phys. Rev. D55, 6760 (1997).
[12] A. Coleman and S.L. Glashow, Phys. Lett. B405, 249 (1997).
[13] A. Coleman and S.L. Glashow, Phys. Rev. D59, 116008 (1999).
[14] A.A. Andrianov and R. Soldati, Phys. Rev. D51, 5961 (1995).
[15] A.A. Andrianov and R. Soldati, Phys. Lett. B435, 449 (1998).
[16] S. Carrol, G. Field and R. Jackiw, Phys. Rev. D41, 1231 (1999).
[17] R. Jackiw and V.A. Kostelecký, Phys. Rev. Lett. 82, 3572 (1999).
[18] D. Hutsemékers and H. Lamy, Astron. Astrophys. 332, 410 (1998);

D. Hutsemékers and H. Lamy, Astron. Astrophys. 367, 381 (2001);
M. Goldhaber and V. Trimble, J. Astrophys. Astron. 17, 17 (1996).

[19] L.P. Colatto, A.L.A. Penna and W.C. Santos, in preparation
[20] H. Belich, Jr., M.M. Ferreira, Jr., J.A. Helayel-Neto and M.T.D. Orlando, Phys. Rev. D67, 125011 (2003);

H. Belich, Jr., M.M. Ferreira, Jr., J.A. Helayel-Neto and M.T.D. Orlando Phys. Rev. D68, 025005 (2003);
A.P. Baeta Scarpelli, H. Belich, J.L. Boldo, L.P. Colatto, J.A. Helayel-Neto and A.L.M.A. Nogueira, Remarks
on the Causality, Unitarity and Supersymmetric Extension of the Lorentz and CPT Violating Maxwell-Chern-
Simons Model, hep-th/0305089, to appear in Nuc. Phys. Suppl.;
H. Belich, J.L. Boldo, L.P. Colatto, J.A. Helayel-Neto and A.L.M.A. Nogueira, Phys. Rev. D68, 065030
(2003).



CBPF-NF-037/03 11

[21] H. Muller, C. Braxmaier, S. Herrmann, A. Peters and C. Laemmerzahl, Phys. Rev. D67, 056006 (2003).
[22] C.N. Yang and R.L. Mills, Phys. Rev.96, 191 (1954).
[23] P.W. Higgs, Phys. Lett. 12, 132 (1964).
[24] P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
[25] P.W. Higgs, Phys. Rev. 145, 1156 (1966).
[26] R. Jackiw, K. Johnson, Phys. Rev. D8, 2386 (1973).
[27] J.M. Cornwall and R. E. Norton, Phys. Rev. D8, 3338 (1973).
[28] S. Coleman and E. Weinberg, Phys. Rev. D7, 1688 (1973).
[29] S. Baek, N.G. Deshpande, X.G. He and P. Ko, Phys.Rev. D64, 055006 (2001);

R. Foot, X.G. He, H. Lew and R.R. Volkas, Phys. Rev. D50, 4571 (1994);
R. Foot and X.G. He, Phys.Lett. B267, 509 (1991).

[30] R. Foot, Experimental implications of mirror matter-type dark matter, astro-ph/0309330.
[31] R.Foot, Implications of the DAMA and CRESST experiments for mirror matter-type dark matter, hep-

ph/0308254;
A.Y. Ignatiev and R.R. Volkas, Mirror matter, hep-ph/0306120;
R. Foot and S. Mitra, Astropart. Phys. 19, 739 (2003);
R. Foot and R.R. Volkas, Phys. Rev. D68, 021304 (2003);
A.Y. Ignatiev and R.R. Volkas, Phys. Rev. D68, 023518 (2003);
G. Sanchez-Colon, R. Huerta and A. Garcia, J. Phys. G29, L15 (2003);
R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Phys. Rev. D66, 063002 (2002);
Z. Berezhiani, D. Comelli and F. L. Villante, Phys. Lett. B503, 362 (2001);
N.F. Bell, Phys. Lett. B479, 257 (2000).

[32] L.P. Colatto, J.A. Helayël-Neto, M. Hott and W.A. Moura-Melo, in preparation.
[33] H. Belich, J.L. Boldo, J.A. Helayël-Neto and A.L.M.A. Nogueira, to appear.


