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Abstract

The critical behavior of the quenched bond-mixed ferromagnetic
cubic model, on a planar self-dual hierarchical lattice, is investigated
within a simple real space rencrmalization group. We obtain the
complete phase diagram of the system, exhibiting three phases. This
phase diagram is nearly exact for the hierarchical lattice, and believed
to be of high precision for the square lattice. The correlation-length

critical exponents and the universality classes are determined as well,

KEY-WORDS: Cubic model, Criticality, Renormalization group,
Hierarchical lattice.
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1 Introduction

The study of the quenched bond( site)-diluted and bond( site)-mixed
models is motivated by both theoretical interest and various possible ex-
perimental applications on disordered magnetic systems. Several works
have been dedicated to these models, very particularly, to the Heisenberg
model( see [1] and references therein), the Ising model( see [2] and references
therein) and the cubic modell®.

The cubic model or discrete N-vector modell®7) has been conveniently
applied to describe phase transitions in rare-earth compounds(?, molecular
oxygen adsorbed on graphite!®), order-disorder transition in atomic oxy-
gen on tungsten!®, among many other applications( see [3] and references
therein). The dimensionless Hamiltonian associated with the cubic model
is given by |

BH = -NK Y §.5; (1)
<iy>
where 8 = 1/kgT, (ij) runs over all the couples of first-neighboring sites,
the spin §; at any given site is an N-component vector which points along
the edges of an N-dimensional hypercube, i.e., .g',-:(:l:l,O, 9,...,0),
(0,#1,0,...,0), ..., (0,0,0,...,£1). As we shall see later on, the model is
closed, under the renormalization group(RG) transformation, if a quadrupo-
lar interaction is included into the Hamiltonian, i.e.,
BH = -NK ¥ §.5; - N’L 3_(5.5;)*. (2)
<ij> <ij>
This Hamiltonian is an interesting one since it contains, as limiting cases,
various important statistical models, namely, the Ising model(N=1), the
Z(4) model( N=2), the 2N-state Potts model(NL=K), the N-state Potts
model(K=0) and the grand-canonical statistics of the self-avoiding walk
(N — 0)l,

The purpose of the present paper is to study, for the first time as far
as we know, the criticality of the quenched bond-mixed ferromagnetic cu-
bic model on the square lattice which we approximate here by a self-dual
hierarchical lattice. The RG formalism is presented in Section 2, our results

in Section 3 and our conclusions in Section 4.
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2 Quenched Bond-mixed Model and RG For-
malism

‘The quenched bond-mixed mode! is defined by Hamiltonian (2) where
the following probability law is assumed for the coupling constants K and
L:

P(K,L) = (1~ p)§(K ~ Ky)6(L — L) + pS(K — K2)6(L — L) (3)

where 0 < p < 1. By imposing the ground state to be ferromagnetic we
obtain that K; >0, K; >0, K; + NLy; >0and K, + NL, > 0.

Our treatment consists in constructing a real space RG which
associates the probability distribution given by (3) with each bond of the
self-dual Wheatstone-bridge( fig. 1), a graph which guarantees an excellent
approximation for the square latticel’). Let us introduce for convenience

the transmissivity variables [6:11.16-18]

1 —exp(—2NK)

B TRV - Dexp-N(K + ND)| + exp(—2vg) 10U . @
1 - 2exp[-N(K + NL)] + exp(—2NK)
"= TT2(N - 1) exp|-N(K + NL)] + exp(—2nE) <00 )
hence
1-1¢, '
xpl-NK +NL) = T i T v = Nt; (6)
_1-Nt; + (N~ 1)t
exp(=2NK) = I TN l)t:' (7)

The transmissivity (2),¢;) generalizes the scalar one introduced for the

Ising™], Pottsl' and Z(4)'¥ models. The equivalent transmissivity
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(7, (), tP))) of & series(parallel) array of two bonds with transmis-
sivities (tm tm) and (tm tm ) is given by

1 = ¢ (r=1,2) (8)
(tM)P = ()P )P (r=1,2) (9)
i @ _ 1= Nt® (N ~ 1))
%)= 14+ Nt 4 (N - 1)t (¢=1.2.p) (20)
L . =129 Q)
1+ Nt + (N - 1)elY

where D stands for dual( see [14] and references therem)

The series and parallel algorithms enable the calculation of the
equivalent transmissivity of any( two-terminal) graph which is reducible in
series/parallel operations. For those graphs( e.g., the Wheatstone-bridge
array of fig. 1) which are not reducible, the Break-collapse method!!5:16]
can be used. We have applied this method to fig. 1 and have obtained the

following equivalent transmissivity (t(w} t(w)) where

W - g’ 2 (13)
with
N = g+ 2 + wnn + wwe + (N = 1) (usz2th 21wz + 1 Zay2220,)

+(N = 1) z2th z0w) + 1 2192w2 + uiy1z1we + Uy T 29t

+u1w1Z1Y2 + U1 21234 + Uawaz1 Ty + UsT a2y + Ut 22y + U, T )

HN = 1)(N = 2)(uw2z1y221 + T23n 22w143)

(14)
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Nz(w) = 2w + 232 + Ugyz22 + Ugwazy + N(N — D)z g 230482
+(N = 2)(N = 3)zzy222waus + N(N — 2)(x1p120w2u; + Zayaz1wy )
+(N = 2)(z2y222w2 + T2y223U2 + Y222watiz + T229wats + Tayawalsz)

+N(ziph 21w + Vaziwith + T2t + Ty wath + Tiyiz2th)  (15)

D™ = 14 N(uyzywy + wyizy) + (N = 1)(tgyz22 + gy ) + N2y zywny,
+(N = 1)zayrzowa + N(N — Dugyy 5024
+(N = 1)(N -~ 2)z2z2wauain -
+N(N — 1){(u1 2111 25wz + U1 Z2y221w4). (16)

Let us now focus the bond-mixed problem. Distribution (3) can be

equivalently rewritten as follows:
P(t1,t3) = (1 — p)b(ts — t{")8(t2 — t§7) + pb(ts — )61 — 1) (A7)

where (t{"), t{") are related to (K7, L;) through eqs. (4) and (5) ( which also
provide the relationship between (t{?), :g”) and (K,, Ly) ). If we associate
now distribution (17) with each bond of the Wheatstone-bridge array of
fig. 1, we obtain for the equivalent distribution Pw(,,¢;) the following
expression:
14

Pl ) = L R(1-p) ™6t - 0)8(0 - 4))  (18)
where F. and n; are respectively the weights and exponents associated with
the possible bond-configurations in the (self-dual) Wheatstone-bridge. The
{F:} satisfy X, F; = 25, and the {(t",£{?)} are straightforwardly obtained
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from eqs. (12-16). The present scaling operation does not preserve the
original binary form since Py has 14 terms. At this level, we shall intro-
duce an approximation, namely to approach Py by the following binary

distribution:
P'(ty, 1) = (1 — p)(ts — £57)6(t, ~ ') + p'8(t, — €768, — ) (19)

where (p, tm' t“r tw tm ) are functions of (p, t““' m,t?},t?)) to be de-

termined. To do this we impose

<t >p=<t >p, (20)

<YHo>p=<ty >p, (21)

< tity Sp=< ity >p,, (22)

< ()t >p=< ()t >p, (23)

< ti(ts)? Sp=< 1{t2)? >p, (24)

where < .. > denotes the standard mean value (for example,

< (b)) >p= (1= + p‘(t;z))“). This type of approximation( in
which the first relevant momenta are preserved) has been successfully used
for various problems!®*'®! which are recovered herein as particular cases.
The set of equations (20-24) provides (p, t(l} tm' tm' t(z) } as explicit
functions of (p, "¢ (1) (2) tm) Its iteration yields the RG flow in the

(p, 8, £V, D, 42

and consequently the phase diagram. The thermal critical exponents are

space( or equivalently in the (p, K;, L, K3, L) space),

obtained through the calculation of the relevant eigenvalues A; (A; > 1) of
the Jacobian a(p’, !, e & ) /8(p, ¢, t), 2 1?)) associated with
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the unstable fixed points. More precisely, the correlation-length critical
exponent v; is given by v; = In(b)/In();), where b is the RG linear expansion
factor( b=2 for fig. 1). The crossover critical exponents &;; are defined

whenever more than one relevant eigenvalue exist, and are given by ¢,; =
In(3;)/In(%).

3 Results

Within the present RG we verify the existence of three phases, namely
the paramagnetic(P), ferromagnetic(F) and intermediate(I) ones. These
phases were already present in the purel® and diluted cases and are
characterized by
(5) = (51, 8%, SF)) =0

and
~{(S#))-1/N=0 Vae{1,2,..,N} (P),

(Sy=o0

and

{(S8)?)~1/N>0 fora=ape{l,2,..,N}
<0 fora#ag (1),

(5)#0

and

{(S2)*)-1/N>0 fora=age€{1,2,..,N)}
<0 fora#ap (F).

These phases are associated, in the (p, t?’,t?), t{z} ,ts_.z)) space, with the fol-
lowing fully stable fixed points:
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{0,0,0,0,0) and (1,0,0,0,0) (P)

(1,1,1,1,1) and (0,1,1,1,1) (F)

(1,0,1,0,1) and (0,0,2,0,1) (I).

Notice that, in the (I)-phase, the system has chosen one of the axes, but
not a sense within that axis. |

The model we are considering here contains, in many different ways, the
Ising, the Potts and the bond percolation models as particular cases. In
2ll of them, the square lattice exact critical points are recovered within the
present RG. Furthermore, various slopes are almost exactly reproduced( see
table I). We have consequently good confidence that the RG critical surfaces
we obtain here can be considered as a high precision approximation of the
corresponding ones in the square lattice. This satisfactory fact is clearly
related to the self-duality of the Whea.tstone—bridge array we have used,
thus preserving the self-duality of the square lattice. The various critical
. exponents we have obtained ( see table I) are exact for the hierarchical
lattice but clearly not for the square lattice.

The subspace (p,t,t,13,2;3) is closed under RG; it wnapoﬂds to the
particular case NL=K ( 2N-state Potts model with dimensionless coupling
constant 2NK). For the case N=1 ( Ising model) the present approach
reproduces the solution obtained in {2]. The phase diagram associated
with N=2 is presented in figure 2. The points marked A in this figure are
fully unstable fixed ones and correspond to the bond percolation limit. The
axes CBC and C’CC’ correspond to the pure 2N-state Potts model. The
point B is unstable out of the critical surface; within this surface it is fully
stable if N < N* = 2.6, and semi-stable if N > N*; indeed, at N = N*,
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new fixed points appear through a bifurcation!®l,

In fig. 3 we show typical cuts of the phase diagram in the 5-dimensional
full space. In figs. 3a and 3b we present cuts for N=2. These diagrams
share with the pure case(p=1) the presence of three phases. However,
when the value of p decreases, the intermediate phase region shrinks. Fig
3¢ corresponds to the N=3 diluted case, and we verify that for p < p, = 0.5
( critical percolation probability) the ferromagnetic phase disappears. The
N=1 case is shown in fig 3d; let us stress that the P-I critical line must
be considered as a mathematical artifact(6:1%),

The behavior for arbitrary values of N has been analysed and the

corresponding diagrams present the same characteristics mentioned above.

4 Conclusion

In this paper we have studied, within a real-space renormalization group
method, the criticality of the quenched bond-mixed discrete ferromagnetic
cubic model { N-vector model) in a square lattice, herein a.pproﬁched by
a self-dual hierarchical lattice. The 5 parameters of the present problem
ensure considerable freedom for renormalization, thus leading to results
whose precision is quite higher than that obtained for the diluted modell4.

The present treatment provides an efficient method with few
mathematical requirements. In fact, the present procedure is practically
as simple as a Mean Field approximation, providing nevertheless quite su-
perior results. As a final remark, it is worthy to stress that the criticality

of the present model can be understood in terms of competitions between
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the Ising, N-state and 2N-state Potts, cubic and percolation models.
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Caption for figures and tables

Figure 1: Iteration associated with the Wheatstone-bridge hierarquical
lattice( the full and open circles respectively denote the internal and

terminal sites of the graph).

Figure 2: N=2 phase diagram and RG flow in the (p,1,,%,, #;, ¢3) subspace
( 2N-state Potts model). O, @, denote, respectively, the fully stable, fully
unstable and semi-stable fixed points. The paramagnetic(P) and ferromag-
netic(F) phases are indicated. The critical surface is invariant under the
transformation (p, ty,¢;,%3,%2) — (1 — p,t2,85,2, % ). The line ABA lies the
plane p=1/2; the line CBC correspond to t; = t; = 1/(V2N +1).

Figure  3:Typical cuts of the full 5-dimensional space
(P 1/ K3, L/ K, K [ Ky, L [Ks): (8) N = 2,K, = 2L, Ki/K; = 1 (b)
N=2KH =2L,K\/K;=08(c) N=38,K; =L, =0. d) N=1,K, =
L,K /K, = 08 . (P),(F) and (I) respectively refer to the paramagnetic,

ferromagnetic and intermediate phases.

Table I: RG values for some fixed points( exact results), correlation-length
and crossover exponents and limiting slopes. Whenever available, expo-
nents and slopes are compared with the square lattice exact results. v, and
v, are the correlation-length critical exponents; @, is the crossover critical

exponent.
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Table 1

critical points eritical  exponents slopes
{p,t(l'), l;”. !;”.tgz)) present RG  square lattioe(exact}) present RG  aquare lattice(exact)
Nai | (1.0.414,0.414,04140.404) | s =125 1[27] —dt; [dpm0.45  6/Z - 8 % 0.48 [21)
=158 ?
{1,0.414,0.414,0.414,1) w=115 1[29) —di; /dp=0.45 63— 8 % 0.48 [21)
(1,0.414,0.414,0.414,0038) | 4, =105 1[29) —dt; [dpm0.45 63 — 8 ms 0.48 [21)
N=2 | (1,0.414,0.414,0.333,0.333) v =085 3/3][23}] ~dty fdp=0.44 49 rs 0.44 [37)
=272 7 _
(1,0414,0.414,0414,0.172) | 4 =115 1 [23] ~dty Jdp=0.55 1/2
=dt; [diz=0.5 1/2[25]
N=3 | (1,0.34,0.34,0.34,0.21) v =092 1° order?
VN {0.5,00,1,1) we=143 4/3{24) —dty Jdp=3.04 4in2 v 2.77 [26]
vp =143  4/3[2)
Sp=1 1[24)
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