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Abstract: We present a new class of quantum-mechanical potentials.
These are in the midway between the exactly solvable potentials
and the quasi-exactly ones. Their fundamental feature is that one

can find the entire spectrum of a given potential, provided that

some of its parameters be conveniently fixed.
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1.

Since the appearing of the gquantum mechanics, the searching
for exactly soluble potentials (ES) has been a constant [1). This
relies in the importance of such solutions in many branches of
Physics, and that these solutions can be used as basis to perform
perturbative calculations in non-exact potentials. Until recently
it was thought that there would exist only two classes of
potentials in quantum mechanics. Namely, the exactly soluble and
the non-exactly soluble ones. However about a decade ago [2],
another class was discovered and, since then, has been widely
discussed in its various aspects [3-7]. This class, the so-called
quasi-exactly soluble potentials (QES), is characterized by the
fact that it is only possible to have exactly a finite number of
their energy eigenstates, others can only be obtained through
numerical calculations, like in the non-exact soluble potentials.
The importance in the study of these new potentials, apart from
the intrinsic academic interest, rests on the possibility of using
their solutions to test the quality of numerical methods and in
the possible existence of real physical systems which they could
represent.

Here we intend to report the finding of one more hew class of
potentials, what we call the conditionally exactly soluble
potentials (CES), because its principal feature is that of having
exact solutions only when certain conditions are provided, namely,
that some of the parameters of the potential be fixed to a very

specific value.
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This new class of potentials are positioned amid the ES and
the QES potentials. 2All of their energy levels can be exactly
obtained like happens to the ES potentials, but their parameters
cannot be arbitrarily chosen as in the QES potentials. The first
feature put them in conditions to be wused in perturbative
calculations, having the advantage that, for the potentials
belonging approximately to their form, they take into account the
anarmonicity of the potential, unlike the traditional perturbative
method where it 1s commonly used the harmonic oscillator or any
other exact potential with more appropriate form. The second
feature put the CES potentials in a more suitable situation in
order to testify about the quality of a given numerical approach.
Furthermore we will see that one could expect some fashion of
reality in at least one of these potentials.

The way to get such potentials we use is that of looking for
a mapping between them and a driven harmonic oscillator. This is
done by performing non-linear coordinate transformations, and then
requiring that a certain term vanishes.

We start with the Schroedinger equation for a giveh potential
V(r), do the variable transformation r = £(u) and redefine the

wave function like

y(r,t) = vVET (u(r)) x(r,t),
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where the prime denotes differentiation with respect to the
variable wu. This new wave function obeys the transformed

Schroedinger equation

n? a°
i el + V_(u) px(u) = E_ x(u), (1)

where u 1is the mass, E% is some constant resulting from the
transformation which takes the role of the "energy" in the new

equation. Furthermore it is straightforward to show that

v, - 5 = @) *fvie) - B + avew, (22)
with
I N D ¢ £777(u) 3 £77(u
AV(u) = & [ e e [_f"H'u ]a] (2b)
This type of approach has been used extensively in the
path-integral method of guantization (8]. However for
transformations where f(u) = u“, with o being real, AV{u) will

always produces a u? term, that should be removed in order to
get a driven harmonic oscillator potential in the new variable.
This is the origin, for the case here considered, of the very
particular fixing of one of the potential parameters.

Let us now see the first two representatives of this new

class of potentials. First of all we see that an extension of our
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old acquainted Coulomb potential belongs to it. This potential is

V(r) = ? + B_ 4 > __ . (3)

The transformation is the same one that 1links the Coulomb

potential with a three-dimensional harmonic oscillator f(u) = v’

[8]. In this case the expression (2) reads

2
V_r(u)-Er=-4Eu2+4Bu+4A+[4GO+ ]u'z. (4)

where we can identify E_ with 4 A, the frequency of the oscillator
w = ¥Y=8E/u , and the driving force is 4B. In order to get an exact
solution one can follow one of two possible ways. The first one is
the elimination of the driving force (B = 0), leading to the
solution of the usual Coulomb potential. The second way is that of
imposing the elimination of th.e centrifugal-barrier-type term,
this is obtained by imposing that G, = - 3h2/32u. This last case
lead us to the first CES presented in this work. It is interesting
to observe that for great distances it behaves like a s-wave
Coulomb potential.

Using the solution of the driven harmonic oscillator, and
returning to the original physical variable, it is not difficult

to obtain the eigenfunction
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a2 r 82\
oo = ) e )

g (5)
ol ]

where we defined

and the energy obeys a polynomial equation, coming from that of

the driving harmonic oscillator, of the third degree
n’(n + 1/2)2E: +2p AzE: +pua BzEn + u B*8 = o. (6)

From the three solutions of the above equation we shall discard
two. This can be done by a simple physical criteria. As can be
seen from the form of the potential, we see that when B = 0, the
energy spectrum must be reduced to that one of the Coulomb type.

Using this criteria one gets the solution

2 1721173 3 1721173 a
E=R+[Q +R2] +R-[Q +32] -3‘, (7a)
where

- - 2 - - 3
Q= (3 a al)/9 + R= (9 aa 27 a, 2 ai)/54, _ (7b)

2



CBPF-~-NF-035/92

-6-

and

2 p A% , a_ = p A B? , a, = u B
K (n + 1/2)2 ni(n + 1/2)° 8 hi(n +1/2)2

(7¢)

The second example, as far as we know, does not have in some
limit any other well known ES potential, as happened in the
previous example. The potential appears like

vie) = AP 4+ B __ 4 , (8)

where 9, is chosen to be equal to -5h2j72u , in a completely
analogous fashion to the previous case. IIt is remarkable to
observe that a non-exact version of this potential was considered
recently [9), in connection with an effective gquark-antiquark
potential model for heavy and light mesons. In fact, it is easy to
see that for high radial guantum numbers the above CES will have
its spectrum more and more close to the non-exact case appearing
3/2

in [9]. The transformation function in this case is f(u) = u

and the Eq.(2) looks like

v (u) - B, = (9A/4) u®> - (9E/4) u + 9B/4 , (9)

and now we identify E, with 9B/4, w = v9A/2u , and the driving

force is represented by -~ 9E/4. This time the eigenfunctions are
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-172{_2rs3_2 14 E
wn(r) = [2(1“”111/3 ] [I’ - B ] Hn[B [rzfa_ 2; ]] .

E | 10
e/ S

with g8 = (ouas2n®)y'/*

. The equation for the spectrum is simply

E = 162 [(n + 1/2)VOAj2u + 93/4], (11a)

9

with the solutions

E =t 4vVA
n 3

1/2
[ (n + 1/2)VSA/ 21 + 93/4] . (11b)

It is not difficult to convince oneself that, for the cases where
the parameter B is positive, the positive solution is quite good,
but if B is negative one can see that there will exist prohibited
guantum numbers. This can be seen by imposing that E must be a

real quantity so,

24 172
SA]

n= Int[[—gg- - -%—], (12)

where Int[.] stands for the first integer after the value of its

argument. This, however, does not says that there are not such
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energy levels but that, perhaps, it should be searched in the

negative solutions in (11b). It is only a matter of

experimentation to verify that, for instance, with n = 1 the

negative solution looks like a ground state eigenfunction, because

it does not have any node.

The problem is that this potential, in contrast with the
former, does not have some type of limit as a guide to decide
about what solution to use. This problem is under investigation
and we intend to report on it in a further publication.

As should be expected, these two cases can be mapped one into
another through a suitable transformation, in the first one, for
example, it would be f(u) = u'?,

Sone extensions can be thought, 1like looking for
supersymmetric partners, one can find another CES representatives
belonging to Poschl-Teller, Rosen-Morse, and others classes of ES
potentials.

We can also study the possibility of applying the second
potential presented above to the case of quark-antiquark ﬁotential
models. These and other problems related to the CES are presently
under investigation, and we expect to report on them in the near

future.
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