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" Abstract

We argue that, in three dimensions, spinors should have four com-
ponents as a consequence of the algebraic structure realized from the
Clifford algebra related to the Dirac equation.
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1 Preliminaries

In this letter we analyze the kinematics of the Dirac equation in three di-
mensions. Our interest is concentrated on the spacetime with Minkowski
metric (+ ~ ~), but our results are easily extended to other metrics and to
Euclidean space as well.

In recent years, we have studied carefully the four-dimensional Dirac
equation [1]. We have discovered that there is a spacetime SU(4) symmetry
closely related to the formulation of the Dirac equation in terms of the
Clifford algebra of the Dirac matrices or of differential forms (the Dirac-
Kéhler equation). Actually, we believe that the former is a representation
of the latter [2,3]. This work in three dimensions is a step forward in the
foundation of such ideas.

In the framework of differential forms, an SU(4) symmetry was also
found by Becher and Joos [4] in their pioneer work on the subject. They,
however, interpreted it quite differently. Our point is that the Lie-algebraic
structure related to the Dirac-Kihler equation, or its all-important matrix
Dirac counterpart, follows directly from the Clifford algebra structure endo-
wed on spacetime.

We conjectured [1,2] that in three dimensions the related symmetry
group would be SU(2) x SU(2). This we show in what follows and it has
deep consequences.

We use the formulation of the Cliflord algebra related to the Dirac equa-
tion in terms of differential forms as a first tool. This aims to indicate
that the algebraic structure has its roots in spacetime, something which is

somehow not properly seen when using matrices.



CBPF-NF-035/91

-2

Once the SU(2) x SU(2) structure for differential forms {endowed with a
Clifford product) is demonstrated, we pass to the representation in terms of
matrices, profiting from the isomorphism stated by Graf [5]. We show that
the usual work with Dirac matrices in three dimensions is not in agreement
with the algebraic structure.

Further, we show that the action of discrete symmetry operators such
as parity and time reversal precludes the use of a two-component formalism

for spinors in three dimensions.

2 Differential forms in 241 dimensions
The space of differential forms in three dimensions has eight components,
1,dz#,dz* Adz",dz® Adz' Ad2® = ¢,

where 4 and » run from 0 to 2 and A denotes the usual representation of
the exterior product of differential forms. The duality * operator defined
by Hodge links the subspace of forms with degree p with that of those
with degree 3 - p; thus, the set of four components (1,dz*) maps into the
remaining four, that is, (dz* A dz*,¢).
We assume further, following Kahler [6,4], that a Clifford product is
defined such that
dz* v dz¥ = dz* Adz¥ + g*“. (1)

With this operation, we look for the Clifford commutator between differen-

tial forms {4]: -

dz¥,dzl| = dx¥ v dal - dat v d2¥, (2)
v
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where dzX and dzl represent two out of the eight basic differential forms.
In order to be able to exhibit the Lie-algebraic structure relevant to three
dimensions, we give explicitly the Clifford commutators for all forms:
[dz9,d2?),, = 2d2° A dz!  [da?,dz! A de?], = —2d2?
[dz®,d2?],, = 2d2® A dz?  [d2?,dz® A d2?],, = 2dz°
[d2°,dz® A dz?],, = 2dz' [d2?,dz! A d2?],, = 2dz?
[d2°,dz® A d2?],, = 2d2? [dz® A dz!,dz® A d2?), = ~2dz! A d2?
[dz!,dz?),, = 2dz® A dz? [dz® A da?,dz! A dz?], = —2dz0 A dz?
[dz!,dz® A dal), = 2dz° [dz® A da?,dz? A ds?), = 2d20 A d2!,
all others being zeroc. We notice that the volume form ¢ commutes with all
the remaining forms. This indicates somehow the algebraic structure that

is to be expected to arise.

3 The algebraic structure

To illustrate the algebraic structure with an example, let us consider the
three forms dz®, idz! and dz° A dz!. Notice that all have a unit norm. The
Clifford commutators are

|4a%,ida?] | = 2ids® A da?

[idz‘,dzo A d:l:l]v = 2idz°

[42° A dz‘,dz“]v = 2i(idz?).
Defining
1. o 1.1 1,0, .1
X1=-§dz ’ X3=§tdz ' X3=§d3 A dz ) (3)

the above commutators can be synthesized as

Xk, Xe]y = texemXm, (4)
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with €44, the usual totally antisynimetric symbol, The dual Hodge forms

are dz! A dz?, dz® A dz? and dz? for the original set. Consider now the

commutators among the set idz! A dz?, —d2® A dz? and idz?. One finds

[ida? A dz?, —dz® A dz? , = 2ida® A da’
[ide?,ide* A do?] | = 2i(idz")
[-d2° A da?,id2?] , = 2idz® A da?,

so that by defining
Lo 1, .3 L0, 4.2 1,2
Y1 = cddx’ Adz?, Yo = —=dz" Adz®, Yy = —idz?,
2 2 2
the above commutators can be summarized in the relation
[thftlv = t€ktmXm.
The stage is set. Following the usual manipulations, define now
1
Wi =5(Xa+ 1)
-1
Wk = E(Xk - Yk).
Application of the rules of the game results in
(Wit W] = ieremWit
[W:’W‘-—] v_ 0
[W;, Wf]v = tepmW,, .

_ :_';(5) |

(6)

Ul

(9)
(10)
(11)

This is precisely the structure of an SU{2)x SU(2) algebra for the differential

forms. That is, conversely, any differential form can be represented as a

linear combination of SU(2) x SU(2) generators, the unit matrix and the
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volume form. For reasons of convenience, we shall write the product as
SU(2)4 x SU(2)-.

Moreover, the following properties are valid:

WE = LiWF (k=1,2) - (12)

*Wai = q:iW;" (13)
and, subsequently,

ssWE=WE (k=1,2,3). (14)

A glance at the commutator table shows that the original set is not a pre-
ferred one. We can choose, for instance,

1
2
= %dzo A d-'ﬁag Y2 = %‘-d32’ Ya= %id{tl A da’. (16)

X1 = %idml, X3 = %dzo Adz', X3 = sd2f (15)

This choice, as we shall show later, corresponds to what is called the Dirac—

Pauli picture (or representation) in four dimensions. Also, the choice

Xy = %idzl, Xy = %idzz, Xs= %idz‘ A dz? (17)

Y, = —%dzo Adz?, Y, = %dzol\ dz!, Yz = -;-dzo (18)

will be seen to correspond to the Kramers—Weyl picture.
In any case, the procedure described above for the construction of the

SU(2)x SU(2) algebra applies. Interesting properties are the following ones:

XivXovXyg= %il, Yivhavihhi= —%8. (19)
For the §U(2) generators, one has
wrvwivw}t = ilg(‘l -¢) (20)

Wi vWs VWi = —(it +¢). (21)
1 2 3 16
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The resemblance of the right-hand side with the costumary chirality projec-
tion operators in four. dimensions is noticeable, provided the volume element
is related to the matrix ~s.

In what follows we shall refer to the pictures associated above as the

Dirac-Pauli and the Kramers—Weyl pictures.

4 The Dirac-—Kahler equation

At this point we refer briefly to the formalism which deals with spin-—;— par-
ticles in terms of differential forms. Further references can be found in our
previous work [1,2,3] and in the work of Becher and Joos [4].

The differential operators of exterior differentiation, d, and its adjoint
(with respect to the “usual” scalar product), §, combine to form the Dirac-
Kihler operator, i(d ~ §).) This operator leaves invariant the minimal left
ideals of the Clifford algebra [3,4] and any ideal can be associated to a Dirac
spinor. In fact, the result of the Dirac-Kahler operator on a minimal left
ideal is exactly the same as the result of the usual Dirac operator with
gamma matrices on a suitable spinor for Euclidean and Minkowski spaces
of dimension two and four.

The fundamental concept involved is the isomorphism established by
Graf {5] between differential forms endowed with a Clifford product and
gamma matrices:

dz¥V — 74, (22)

We take for granted this isomorphism for the present case of three dimensions

1We have slightly changed our conventions with respect to previous work, following
now those of Curtis and Miller [7].
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and will exploit it, using the algebraic structure shown above for differen-
tial forms, to construct representations of the differential forms in terms of
matrices.

Since the work with differential forms for spin-} particles is less familiar
to theoretical physicists, we shall only state here that one can construct the

set of four coupled linear differential equations of the first degree from the

application of the Dirac-K&hler operator to a minimal left ideal, ¥,
i(d-6)¥ = mV¥. (23)

The four equations couple by pairs, as should be expected from the
algebraic structure described above. We leave for the section on the repre-
sentation by matrices and spinors a more explicit discussion of the meaning

of this coupling,

5 Matrix representation and the Dirac matrices

In terms of matrices, the algebraic structure found with differential forms
is well known. Since we work in the lowest dimensional representation, we
have, indeed, 4 X 4 matrices:

o 0 0 0

W = Wy
0 0 0 o4

, (24)

where the o4 are the Pauli matrices.
The matrices representing the Dirac matrices and their products will
turn out to be block-diagonal matrices, i.e., the direct sum of 2 X 2 Dirac

matrices. To wit:
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Dirac-Pauli
o3 0 {or O f o2 O
1= y =i y =i ;
0 o3 0 o 0 -0
(25)
Kramers-Weyl
g3 0 | o1 O o3 0
0 = , Y=-i , Y= -—i .
0 -3 0 oy 0 T2
(26)

The reason for the proposed names of these two pictures seems now evident:
4° is diagonal and has the sign of the emergy in the rest frame for the
Dirac-Pauli picture, while 4° and i7'7? exchange places when going to the
Kramers—Weyl picture.

A comparison between these matrices and those quoted in the literature
for the four-dimensional representation 8] shows a substantial difference:
there is always a relative minus sign for one of the blocks in the SU(2)_ sec-
tor. This is not accidental, it is a direct consequence of the exact spacetime
algebraic structure proper to three dimensions.

It is worth remembering that from the Clifford commutators for diffe-
rential forms, the volume 3-form was found to commute with the rest. In
terms of matrices, its appearance is transparent. By calculation from the
expressions above or from clever symmetry arguments, the only possible
block matrix commuting with the others, and still not proportional to the
unit matrix is

' I 0

ir0713 = .
0 -1
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The particular form of this outstanding matrix agrees with the arguments
in the classical work by Brauer and Wey! [9]. (In fact, Brauer and Weyl even
introduced the concept analogous to Hodge duality for Dirac matrices, but
did not completely finalize the arguments leading to the actual form of the
algebra.)

6 The Dirac equation in three dimensions

As anticipated from the results for the Dirac-Kiahler equation, the explicit
construction of the representation for the Dirac matrices confirms that the
four components of a spinor couple in pairs in the differential equation.

This would seem to imply that physically the world in three dimensions
is made of two blocks labelled by the eigenvalues of i4°y'4?, which could
perhaps be qualified as right handed (SU(2)+) or left handed (SU(2)-), ac-
cording to the way coordinate axes are oriented. Particles and antiparticles
are partners with the same handedness, as we shall see below,

However, as demonstrated for two and four dimensions of spacetime
[1,2,3], the discrete transformations of space inversion and time reversal are
crucial to the complete understanding of the underlying algebraic structure.
In our case, they forbid one to igolate a single handedness and force the des-

cription of spin-% particles in three dimensions by four-component spinors.
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7 Discrete transformations: C, P, T and CPT

7.1 Charge conjugation

Let us begin by considering charge conjugation. Applying the standard
procedures from textbooks {10}, the matrix that implements the charge con-

jugation operator, C, should satisfy
ClybC = —y#, (27)

where the superscript ¢ denotes transposition, For three dimensions, it turns
out that the Hodge duality properties of differential forms translates into the
existence of two matrices in the matrix formalism as the representatives of
differential forms related by Hodge duality. The matrices also depend on

the picture. For the pictures considered above, we have

¢ = y09'* or —iyM* in the first example, Egs. (3) and (5),
¢¢ = iyly* or —9%9%¢* for the Dirac-Pauli and
Kramers-Weyl pictures.
The difference between the two alternatives is a relative sign for the lower
pair of components.
Since the matrices at work belong always to the class of block diagonal
4 x 4 matrices, the charge-conjugate spinor features only a reshuffling within

the blocks corresponding to each of the eigenvalues of the matrix i9%y142.

7.2 Space inversion

In three dimensions, space inversion is different when compared to the neigh-
bouring cases of even total dimensions (2, 4). It is a simple drawing exercise

to check that the simultaneous inversion of both space axes corresponds to
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a rotation through an angle = about the time axes. Accordingly, spinors are
related by a simple rotation operator. There is again an equivalent action

by the dual operator. For all pictures, one has

P(@' = -z,t) = iv' P ¥(=,1),
or
Y(a' = —z,t) = YO¥(z,1).
Thus, the blocks with different handedness are not exchanged.

If it is desirable to exchange handedness {or chiralities), this can be
performed by inversion of a single space axis. The matrix representing this
is no longer of the block-diagonal class, but the ambiguity concerning the
relative sign for the pair of lower components in the spinor persists. Calling

F() the matrix for inversion of the k space axis, the candidates, for the

pictures considered, are

{
6 4+ 0 %I
The first example: Py = 7 , Py =
oy 0 > I 0
0 % 0 I
Dirac-Pauli: Py) = % . Pg) = :
o3 0 > I 0
0 zo 0 o
Kramers~Weyl: Py = —i 2 y Py = !
2 0 \ oy 0

This clearly shows the inadequacy of the representation by two-component

spinors.

7.3 - Time reversal

This transformation exchanges handedness by necessity. The novel feature

in three dimensions is the link between the components of the complex-
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conjugate spinor and a spinor transformed from the original one. The results
for the time-reversed spinors in the pictures considered are

Dirac-Pauli

0 0 I
Wit = 1) = BECEOE V@t (28)
0, 0 +I 0
Kramers-Weyl
Yz, t' = -t) = o I Pz, -t) = 0 7 P (z,~t). (29)
I 0 o O

The operation for the first example is the same as in eq. (28). Again, we see
that the matrices concerned are outside the realm of diagonal-block matrices.

It is interesting to remark that, when a relative sign appears between
the non-diagonal blocks, T3 = —1. For matrices with blocks of the same
sign, T? = 1.

74 CPT

As follows from the considerations above, there are two classes of results for
the combined operations. When space inversion is meant as a simultaneous
reversal of both space axes, the pair of uppér components takes the place
of the pair of lower components. In general, there is, in addition, an ex-
change inside each pair, with relative phases being introduced. There is one

particular exception, which occurs for the Kramers~Weyl picture, with

0 a
C=+* P=iy!y*, T= . ; , (30)
_ o1

we have

cpryw=|"° v. (31)
£ 0
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When space inversion means the reversal of a single space axis, CPT
always results in a block-diagonal matrix acting on the original spinor. This
block matrix turns out to be the gamma matrix with the spatial index that
is not inverted, or its “dual”. For Py it is 4% or i7%', and for Pz the
result is similar. The geometrical meaning of this result is not yet fuily

appreciated.

8 Conclusions

The main results of this work were listed at the beginning. Now that they
are more explicit, let us add a few comments.

We believe that we have unveiled a most important algebraic structure of
three-dimensional spacetime. These new results are based on the assumed
validity, for any number of dimensions, of the Graf isomorphism between
the differential forms with Clifford product and the matrices associated to
the Dirac equation. In other words, the algebraic structure associated with
spacetime follows from the related Clifford algebra structure.

We have also shown that this algebraic structure makes the discrete
operations of space inversion, time reversal and charge conjugation in three
dimensions rather peculiar. The understanding of this demands further
investigation.

In the light of this structure, the need for a description through four-
component spinors of spin-1 particles follows. These four-component spi-
nors are certainly different from the ones currently quoted in the literature,
and this may induce changes in several physical results obtained for three-

dimensional systems.
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