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ABSTRACT

The behaviour of the pressure and the density as well as the
gravitational field of a dense star are studied in some detail.
For such a purpose and to take into account relativistic effects,
we find a family of exact solutions of the
Tolman-Oppenheimer~vVolkov equation, which contains as a
particular case solutions corresponding to a y-law equation of
state. The mentioned family can also be used to model the
(luminous or dark) matter content of spiral galaxies, as it fits
the observed data for their orbital velocities profiles.

Key-words: Relativistic astrophysics; Spiral galaxies;
Gravitation and astrophysics; Dark matter and galaxies halos.
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I. INTRODUCTION

General Relativity has 1little effect on the equilibrium
configuration of stars with p << p and m(r) << r, m(r) being the
(geometrical) mass up to a distance r from the center of the star
(Weinberg 1972). Nonetheless, it has been shown that its
influence can become important when studying the stability of
stars and, in fact, the interior of cold catalysed stars (Misner,
Thorne and Wheeler 1970) can be adequately modeled by a
relativistic static spherically symmetric self-gravitating ideal
fluid with energy density p and pressure p.

If such a picture is adopted, Einstein equations for the static
spherically symmetric line element

2vir) 2

2 _ g28tmgz ar® - r?(ae® + sened¢?) ()

ds™ =

can be reduced to a system of two coupled ordinary non-linear
differential equations. One of them is the relativistic version
of Laplace equations, that is,

d¥{r) _ m(r) + anr’ 2
dr T rir-2m(x)] (2)

where &(r) is the gravitational potential.
The other is the Tolman-Oppenheimer-Volkof (TOV) equation

dp _ _ m(r) + 4nr’
& = - (P rrtmE T (3)

which is the generalization of the classical equation of
hydrostatic support.

The energy density p is related to p through the equation of
state
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p = p(p) (4)

and the geometrical mass is given by

m(r) = Ir4nr%pdr . (5)

Relativistic models (Weinberg 1972) are usually constructed by
specifying an equation of state and a value for the central
pressure, p_ (or equivalently for the central density). Egs.
(2), (3) and (5) are integrated outwards from r = 0 to the
surface of the star where the pressure vanishes, subjected to the
conditions p{r = 0) =p_, d(r = 0) =¢0 and m(r = 0) = 0.
Furthermore, & is chosen so as to have ¢ 5 0 when r 5 » or by
requiring & to match onto the Schwarzschild value at the surface
of the star.

An alternative prescription (Berger et al 1983), which demands
the choice of an arbitrary master function G(r)} that reduces the
problem to quadratures, can be used. In section II, following
this method we construct a family of spherically symmetric
solutions that is a good model for relativistic stars.
Conditions to render it realistic are analysed.

Another astrophysical application of that family of solutions
can be found. It is presently believed that in spiral galaxies
the central luminous core is surrounded by massive non-luminous
halos (Rubin 1983). One observational evidence is the
non-decreasing of the rotational velocities of stars far from the
center of the galaxy in spite of the fact that luminosity
decreases exponentially with increasing radial distance. In
section III, we will show that our spherically symmetric
geometries reasonably fit the observational data for orbital
velocities concerning the luminous or dark' region of spiral
galaxies.

'For the question of nature and origin of dark matter in the
universe, see E.W. Kolb and M.S. Turner, "“The Early Universe",
Addison-Wesley, 1990.
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II. A FAMILY OF SOLUTIONS

Employing the method developped by Berger et al (1983), we will

take the master function G(r) proportional to r’ (Hojman and
Rodrigues 1990) that is,

G(r) = ar’ (6)

As will become clear below, it is convenient to take the constant
a in the form

4
E=-'4—:~5-—7-, 7*0,7*3 (7

We will obtain a family of geometries (1) that is adequate to
describe both dense relativistic stars and the matter content of
spiral galaxiesz.

We find

r

p=pr + 33 (8a)

r

r

p = ponr + -3 (8h)

4(y=-1)
=g 7 (8¢c)
and

*fhis solution was first obtained by Tolman, R.C., Phys. Rev., 55
(1939) 364.
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2v = - - 7 T2
e 1-3 1-57 Po¥

where P, and g, are integration constants and

r = 4(v-1) (2-7)
7(37-2)

_ _4(r-1)°
® = 2
Yy + 4y - 4

- 2
37-2

z = _4(¥1)
1z+41-4

When p, = 0,

a(r-1)? 1
72 + 4y - 4 2*

p=

4(vy-1) 1
12+41-4 '.'.‘2

p=

(8d)

(9)

(10)

(11)

(12)

(13)

(14)

and therefore, the 7-law equation of state is obtained as a

particular case for the general equation of state relating (8a)

and (8b), that is,
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I'7z

Fr2
= p,(v*+40-4) [4—(312)-] (15)

[p - a-ve][3v-200 + (r+23p] 1

The analysis concerning the range of values y for which both
the pressure and the density are positive is summarized in Table
I.

An inspection of Table I indicates that realistic models can be
constructed only if 1 < 7 < 2. Moreover, if the surface of the
star is defined by the vanishing of the pressure for a certain

GD1/F
oe, o
P o
those values of ¥, it is seen that relativistic stars will be
properly modeled only when negative values of p, are taken.

and reminding that @ is strictly positive for

IIX. GEODESIC MOTION AND VELOCITY PROFILES OF SPIRAIL GALAXIES

We will show that the family of solutions generated by G(r)ar’
also models the (luminous or dark) content of spiral galaxies.
For this purpose we will study the geodesic motion of a star
(considered as a test particle) in the background geometry given
by egs. (8).

The geodesic equations for the metric given by (1) and (8) to

(12) when @ = g imply that

[

ST ¢t = E (16)
4

ST o= (17)

where E and ! are constants of motion and the dot stands for the
derivative with respect to the arc length s.
As usual, instead of deriving the r-component of the equation
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of motion, it is easier to work with the normalization condition
for the 4-velocity, uu = 1.
By combining the above equations one gets,
2 41-7) 4(7-1) 2(y-2)
r? = 27 -90435,1'1—"1?7 E-r 7 -6 7
¥ r4y—4
(18)
We will study the conditions for the existence of stable orbits
through the analysis of the effective potential
a{y-1) 2(y-2)
LA & 2 (19)
It
2 ¥ | Y )
L - P, ae57 T >0 (20)
7 +4r-4
then V(r) has a minimum for
2 _ _2-7
T = 5y £ (21)
which implies that no circular orbits can exist out of the range
1 <7 <2, consistently with eq. (20) if p, > 0. Also, when
p,=0. YV always has the minimum (21) for 1 < 7 < 2.
For circular motion (r = 0 =T), the orbital velocity defined
by
2
vV =1 ?E (22)
t
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is given by
v = r ez‘b % {23)
From (8.c) we get
4(¥-1)
Vi, =2 g 7 (24)

Notice that v . varies as r" with 0 < 8 < 1.

If v is nearly 1, the orbital velocity increases slightly as r
grows which is precisely the behaviour reported for the velocity
profile for the arms of certain spiral galaxies (Rubin 1983).
Nevertheless, it has to be pointed out that the model is
realistic only if p, = 0.

As the value of 7y approaches 2, the model is more suitable for
the central luminous core of those galaxies, as the orbital
velocity is then very close to a linear function of the distance
from the nucleus.

IV. DISCUSSION

The geometry studied here is a candidate to adequately
represent the gravitational fields due to extremely dense objects.
It was shown that it can fulfill the requirements to be a
realistic model: the conditions of positive energy density and
pressure restrict the parameter ¥ to 1 < ¥ <« 2 and negative
values of the integration constant P, guarantee that the model
naturally accomodates a radius for which the pressure vanishes
and that can then be intepreted as the surface of the star.

For values of ¥ « 1 and ¥ = 2, this family of scolutions also
fits the observational data for velocity profiles of spiral
galaxies. Let us take for example the SC galaxy NGC801 (Rubin,
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1983). From the center of the galaxy up to a distance r of
approximately 5 kpc, the rotational velocities v, ©f stars in

the field of luminous matter - which dominates in this region -
are almost linear functions of r. This function can be
approximated by (23), with 7y very close to 2. An inspection of
Table I shows us that positive values of p and { are guaranteed
either for positive or negative values of p,- In both cases,

we see also that P, has to be very small so that r, (in case
p, > 0) or r, (p, < 0) can fit radial distances values of the

order of 5 kpca.

For r > 5 Xkpc, Voot becomes almost constant ?nd again a good
approximation can be obtained for 7 = 1. As in spiral galaxies
luminosity decreases exponentially with the increasing of the
radial distance, in this region dark matter largely dominates and
Voo is kxept from decreasing due to its gravitational attraction.
Again, table I reveals that for both p,>0 and p <0, for
radial distances larger than a certain critical radius (J:'z or
rs), either p or p is negative. Therefore, as formerly proposed
(Hojman et al 1989), only the case P, =0 is suitable for
nodeling the dark matter dominated region of spiral galaxies.

One of us (LR) is very grateful to Universidad de Chile and
Centro de Estudios Cientificos de Santigo for their kind
hosp:i.talit),l and to CNPq (Brasil) and Conycit (Chile) for
finantial support. One of us (RH) 1is partially supported by
Grant ¥ 89-958 of the FONDECYT (Chili).

*For example, for ¥ = 1.9, r, = (2%)2/5.
o
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TABLE I

Analysis concerning the range of values of 7 for which both the
pressure and the density are positive

p,>0 P, < 0
7 interval p P P P
(~o , -2-2V2) >0 <0 | >0, r<r, | >0 , T,
<0 , r<r a <0 , r<r‘
(-2-2v2 , =2) | »0 , r>r, >0 , r<x, <0 >0
<0 , r<r1 <0 , r>rz |
(-2 , 0} >0 , r>r, >0 <0 >0 , r<r,
<0 , t'«:l':1 <0 , r>r‘
(0 , 2/3) >0 , r>r, >0 <0 >0 , r<r,
<0 , t<rl _ <0 , r>r,
(2/3 , =2+2v2)| >0 , v>r | >0 , r<r, <0 >0
<0 , r<r1 <0 , r>r,
(-2+2v2 , 1) >0 <0 > , r<r, | >0 , r>r,
<Q . r>r3 <0 , r<r‘
(L ,2) >0 >0 , r<r, >0 , r<r, >0
<0 , r>rh <0-, r>r,
(2 , +w) >0 >0 , r<r, >0 , r<r, >0
<0 , r>r, <0 , r>r5
1/Te2 1/T+2 1/T+2 12
r,*[l@lpo] :r;[tllpolhll :r;[ﬁvlpol] :r‘-[}ZIIPOIA]
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