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ABSTRACT

It is shown that the explicit breaking of (1,0) supersymmetry
by means of a torsion-like term yields dynamical mass generation
for the gauge superfields which couple to a (1,0) - supersymmetric

non-linear o-model.

Key-words: Supersymmetric gauge-invariant; Non-linear o-models.
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Two-dimensional supersymmetries of type .(p,g) have been fairly
well studied in a serles of works [1,5]. For the Green-Sciwarz-type
supersﬁrings [61, the (1,1) case is. relevant [7], whereas the for-
mulation.of_the heterotic string [8) reguires a (1,0)-type super-
symmetry on the world sheet [7]. 1Indeed, in the Polyakov's ap-
proach to the heterotic superstring:a'(l}o) non-linear o-model is
coupled to (1,0) supergravity [9], and the critical dimension turns

out to be 10.

In dimensionally reducing the theory from 10- dimensional world,
effective 4—dimen§iqna1 theories of interest for phenomenology should
exhibit an unbroken supersymmetry [7]. Sosa compactification. con-
straint imposes that the heterotic ¢-model be actually (2,0) super
symmetric [7}. Though a superfield formulation .of the latter is
known in (2,0) superspace itself [10], an exhaustive description of
arbitrary (1,0) supersymmetric o-models can be found in [11l], where
geometric constraints emerge if one wishes to actually have a su-

persymmetry of type (2,0).

Rich enough is the structure of anomalies of these  arbitrary
(1,0) supersymmetric o-models. In ref. [2], Hull and Witten pre-
sent in details mechanisms for the cancellation of the o-model a-

nomaly [12].

Motivated by the remarkable guantum properties exhibited bythe
N::% supersymmetric o-models [ll], we shall in this work discuss the
possibility of a dynamical mass generation for the gauge omnection:
of the local Yang-Mills symmetry discussed in [2,11]. We shall pur-
sue our investigation.by_contemplatinglthe general (1,0} action of
ref. [2] modified by the presence of a gauge invariant . interaction

term which explicitly (and softly) breaks (1;0). supersymmetry. This
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term, as we shall discuss later, admits a geometrical interpretation
and is preoposed sc as to probe the fermionic quaftic coupling cha-
racteristic of supersymmetric c-models. O©n the other hand, the
breaking does not affect the renormalisability of the originally ex-
act model and induces two-loop mass-like terms for the gauge fields

of the model.

Before starting. our discussion, let us briefly summarise our
notation and conventions concerning the (1,0) supersymmetry alge-
bra. We parametrise ourzsuperspace by means of the . coordinates

+ - ot : t_ x+xl.
(x' ,x :0), where X~ are the usuval light-cone coordinates {x"= ———)

and 8 is a real (Majorana) left-handed Weyl spinor. The supersym—

metric covariant derivative operator is given by

D= i3,+ 63, (1)
) ] - 9
with 3, = and 3 =—=, and satisfies
8~ 38 oAt
p*= i3 . (2)

+

The tyves of superfields relevant for our purposes here are a real
scalar suverfield, ¢(x;9)}, and a real left-handed spinor superfield,
¥(x;0), defined by the following 8-expansions:

$i(x;0) ¢ (x) - 104 (x) (3a)

t

and

¥(x;8) = Y(x)+ OF(x) , {3b)
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where ¢ is a real scalar'field, A .and |y are respectively right-handed
and left-handed Majorana-Weyl spinors and F is a.real scalar non-

propagating (auxialiary field).

The action for an arbitrary (1,0)-type supersymmetric o-model

written in (1,0) suverspace reads

o © [dzxde I:g'ij (9) + b, . ()] ¢ty (3 69y »
i_fdzxde GABté)wA(va), (4)
where
o¥B = [agn.;niBCm mi]_fc_ : (5)

The suverfields Qi(i==i,2,...,n) give the coordinates of some n-di-
mensionai manifold K (the o-model target space) with metric tensor
gij(Q). The tensor bij(¢)=g—bji(¢) is defined on XK and determines
the (1,0) supersymmétric .version 'ofl the Wess-Zumino term. The spinor
superfields TA(A==1,2,...,m) correspond to local cross-sections. of

AB

some vector bundle V over K, with fibre metrics given by G (¢), con

nection A‘;Btcb) = -A?A((I:) and structure group G €0O(m). The action

S0 is invariant under the local rotations
Cyrh AAB(¢)TB (6)

of G. Without loss of generality, we shall from now assume GAB((D):GAB.

We then add to S, an explicit {(gauge invariant) supersymmetry

breaking term given by
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Sy = 'ngjzxda'a T ,5(®) (De*) (why vB 1Y)

where g is a dimensionless.breaking parameter. The local G-invari

ance of Sy is guaranteed provided that the tensor TiAB(é) defined
over V transforms according to
1AB. LA B CD,,
TIPO(0) = AG(B)AS(S)T" () . (8)

The explicit breaking term proposed in ed. (7) has been unique
ly fixed on the basis of dimensional counting (we wish a dimen-
sionless coupling parameter}, Lorentz invariance and. the regquest
that it gives a guartic fermion interaction once the auxiliary field
FA(x) is eliminated through its equation of motion. We shall now
seek a possible geometric interpretation for the tensor T?B(Q) that

determines our breaking interaction .term.

We start by giving the WA—superfield equation of motion,
. A ioB
20¥* + (igT; gt 2AiAB) (Dot wB o
A giy el saam A i B
-gGTi’j B(Ddﬁ Y(DP )Y Y¥ 1gBTi B(3+¢ ¥© o+
i A i B B A, i LA
+g0T; "y (D8) (D¥™) - goT; "¢ A, ;" (Do) (D)) Y™ 4
- A_ B i 3w _
+gGTiB Aj c(D.tb ) (DE)¥Y” =0 , (9)

and then project on the 8 = 0 component, which yields the follow-

ing solution for the non-propagating field FA:

A, A i A ,,i.B |
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We indeed see that the only effect of our breaking term is to af-

fect the spinor couplings.

Replacing this solution into.the component-field action. stemming
from (Soésbr) yields a quartic spinor coupling. of the form  AXyy

whose explicit expression is:
_ . . i
iqua.rtic = [3;A;,p* 3,0+ 3 9 Tyye)-
i c i, j B
N TA P et (11)

The interaction term given above is all we need to geometrically
notivate the meaning of the tensof TiAB(Q): it is a curl-free tor-
sion on the vector bundle V over K which modifies the connection

AiAB.according to

AB gy . (12)

~ ABR AB i
Thus, the breaking term proposed in eq. (7) is the (1,0). analogue
of the N=1 supersymmetry breaking term that induces the contorted

. non-linear dJ-model of ref. [13].

. We move now towards the study. of some guantum features of the
model defined by the action Soésbr. We shall see that the hreaking
(7) induces a finite 2-loopo mass-like contribution to the gauge connection
AiAB. We pursue our. investigation in terms of supergraph computa-—
tions, despite the explicit breaking of supersymmetry [14], and wé
shall adopt the background superfield method in combination with

the normal coordinate expansion to maintain manifest the invariance

under the K-manifold reparametrisation.
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As for our purposes in this work, the relevant normal coordi-

nate expansions [15] are listed below:

T R PR A R O RS

1 AB .. 1 oj AB,.y .y 1,02
+ 0(eh , (13) -

p (elsrt) = pols vl ! Rl (Dfaj)silaiz '

+ B += *3 i1-izj + +
+ (g%, | (14)

where
S R | a1 _

v,eb = pgterl eMe® (15)

len being the Christoffel symbol of the manifold K. The expansion

AB follows the same pattern as the cne for TiAB. It is also

for A,
worthy to mention that from now on, o' denotes the background part

of the superfield giving the coordinates of the K-manifold.

Though we shall be considering two-loop supergraphs, we trun-
cate our normal coordinate expansion at second order in the guan-
tum fluctuation Ei. For a complete two-loop-analysis of the effec
tive action, it is clear that the expansions (13) and (14) should
be given up to quartic g-terms. However, by analysing all twaooﬁ
diagrams generated by vertices with 3 and 4 superfields gi, we have
checked that they do not contribute gauge field mass-like terms to
the effective action. This justifies why our normal coordinate ég

pansions were taken .as in (13) and (14). Once they are inserted
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into the action (So#Sbf);'onE"can readily,gét the superpropagators: -

<e®(1)eP(2)> = 3P L D(k).§(8,-8,) (16a)
and
Ay, yB Ap Y |
<¥HL)YT(2)> = 77 < D(k)8(9,=0,) , (16b)
._k__g . -

and read off the background-gquantum vertices from which we shéll
set our Feynman diagrams. In (16), a and b stand for the local frame

indices of the: target space (a,b=1,2,...,n).

Before presenting the results fo; the computation of the 2-loop
graphs contributing the gauge superfield a mass term, we should
state a few facts concerning the l-loop analysis. The breaking pa
rameter A requires an l-loop renormalisation as already expected
from power-counting. argument. Its renormalisation.does not how-
ever interfere on the 2-loop gauge-field mass contribution. More-
over, the breaking'of,(1,0)-supersymmetry by means of (7) does not
generate any other l-loop infinity we have to take care of, neither
any finite mass-like term for the gauge superfield. We can there-
fore pass to the discussion of those 2-loop supergraphs relevant for
our purposes in this work.

We draw in Fig. 1 the structure of the 2-loop superdiagrams which
contribute supersymmetric mass-like terms to the superfield AiAB._
They are linear in the breaking parameter ) and, despite the pre-
sence of an explicit O-factor in one of the wvertices, the supersym
metry algebra pefformed in. the course of the supergraph evaluatian
eliminates the explicit 8-dependence in such a way that our f£inal

answer is supersymmetric.
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Structure of the 2-loop graphs which contribute a gauge-field mass term
a A% field
_ Ya - field

g% - field
Fig. 1
Drawing all the graphs with the structure of Fig. 1, and using

the Feynman rules derived fron the actions (4) and (7), we .obtain

the following answer:

o a2z, k. & {L+kép)
igzkj ak dft -+ -
(2m) 2 (2m)2 k? £% (L+kep)?

T . AB e
. |as I:Tk -(¢)D+¢:|6i .

+ 7. 2% @)D tDJ] ALlCB 5 AC
1 + J

+ {(su.sy.breaking terms) , (17)

where the "su.sy.breaking terms" exhibit an explicit 6-dependence

and, even at the level of component fields; they do not yield mass-—

like contributions.
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-

Qur calculations then show that the major. consequence of our
torsion-like breaking term is that, at the quantum level, it trig-
gers the dynamical mass generation for the gauge fields which coup
le to the non-linear o-model és given in the action (4). For N=l-
supersymmetry, ref; [16] indicates dynamical mass géneration from
the coupling of the gaﬁgé superfields to the non-linear"cqmﬂalbut,
contrary to what we have concluded in this letter,.the (1;1)-case

did not require any breaking term with explicit 6-dependence.
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