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Abstract

We establish exact relations between damage spreading and
relevant thermal quantities (appropriate order parameters and corre-
lation functions) of the ferromagnetic discrete N-vector model on an
arbitrary lattice and for arbitrary ergodic dynamics. These relations
recover, as particular cases, those already existing in the literature for

the Ising, Potts and Ashkin-Teller models. "
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Since the recent and interesting Coniglio et al [1] connection between
spread of damage and relevant thermal equilibrium quantities, some effort
is being dedicated to the discussion, from this new standpoint, of discrete
statistical models. In fact, the Coniglio et al study of the Ising ferromagnet
has been recently [2] extended to the g-state Potts and Ashkin-Teller fer-
romagnets. It is important to remark that, although this type of approach
is close to the now standard calculations of the Hamming distance (see,
for instance, [3-6]), the present relations are based on specific combinations
of damages. These combinations are, in general, essentially different from
the Hamming distance (with the exception of the Ising ferromagnet with
Heat-bath dynamics, if a special initial condition is chosen[1}).

We consider the following dimensionless Hamiltonian {discrete N-vector
or cubic model)

BH = —-N3_{K5.5;+ NL(5.5,)7} (1)
i
where 8 = 1/kpT, (1,j) run over all the pairs of connected sites on an arbi-

trary lattice, K > 0 and K+ NL > 0 (in order to guarantee a ferromagnetic

fundamental state) and S: is an N-component vector which points along the
edges of an N-dimensional hypercube, i.e., $;=(£1,0,0....,0), (0, 1,0, ...,0),
.y (0,0,0,...,£1). For theoretical and experimental work related with this
Hamiltonian see Ref. [7] and references therein. Hamiltonian (1) can be
conveniently rewritten as follows. We introduce, for each site, a new ran-
dom variable a; such that a; = 1 (a; = —1) whenever §.=(1,0.0....,0)
(.Sq';-=(--1,0,0,...,0)),a,‘ = 2 (a; = —2) whenever $:=(0,1,0,...,0)
(§:=(0,-1,0,...,0)), ... and &; = N (a; = —N) whenever $;=(0,0,0,...,1)
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(.S-".-=(0, 0,0,...,—1)). The Hamiltonian becomes now

BH = —NY {(K + NL)é(ay,a;) + (~K + NL)§(ai. —a3)}  (2)

3

where §(a;, o;) denotes Kroenecker’s delta function. At high temperatures,
this model is paramagnetic (P). At low temperatures the system might
exhibit long range ordering (this typically occurs for lattice euclidian or
fractal dimension d > 1). If this is the case, either it goes (for decreasing
temperature) from the paramagnetic to a ferromagnetic (F) phase, or first

goes to an intermediate {I) phase, and then to the ferromagnetic one (7]

and references therein). In the paramagnetic phase, all N axes and both
senses on each of them are equally probable. In the intermediate phase, one
among the N axes is preferently occupied {say af = 1,Vi), but both senses
of this axis are equally probable. Finally, in the ferrorm!.gnetic phase, one
of those two senses (say a; = 1,Vi) is preferently occupied. The associated

order parameters can be conveniently defined as follows: -

my =< 8(a?, 1) > —%  (_3)'_ 
and
mrp =< 6(0,‘,1) > - 6(0;,-—-1) > (4)

where < ... > denotes the thermal canonical average. In the P-phase we
have m; = mp = 0; in the I-phase we have m; # 0 and mf = 0; finally, in
the F-phase we have m; # 0 and mp # 0.

Let us now introduce the following convenient two-body correlation

functions:

T1(i,7) =< 6(a?, 1)6(a?,1) > — < §{al,1) >< 8(af,1) > (5)
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and

Tr(i,§) =< 6(ai, 1)6(a;,1) > — < 8(a;, 1) >< 8(a;,1) > . {6)

It is now appropriate to specify four different types of local damages be-
tween two copies (hereafter referred to as A and B) of the system. These
two copies are assumed to evolve in time under one and the same ergodic
dynamics (Metropolis, Heat-bath, Glauber [8}, generalized [9] or any other
one satisfying detailed balance) with the same sequence of random numbers
for updating corresponding sites of copies A and B. The four local damages

we shall consider are:

al=1 and of #1
o #1 and af =1 | (7)
(P =1 and (aB) #1

(o:j‘)2 #1 and (f.:tfg)2 =1

The four corresponding occurrence probabilities are given by

» [6(af, 1)(1 - §(aP,1))]
p= (1~ 6al1)6ef 1) (8)
= [6((af), 1)1 - 6((a?) 1))
pe= [(1-8((af P, (PR 1)]
where [...] denotes the time average over the trajectory in phase space; in

other words, we are interested in the frequencies of ocurrence, along the

time, of those particular damages at site i. Let us now define

F =p —p = [6(ed, 1) - [8(a?, 1)) (9)
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and _
Fy =py = pa = [5((af), 1)} - [6((a )", D) (10)
We now need to introduce four different constrained (time) evolutions:
(i) Copy A evolves without any constraint;
copy B evolves by imposing, at all times and for an arbitrarily chosen
site (say 1 = 0), af # 1.
(i1) Copy A evolves with af = 1;
copy B evolves with af # 1.
(iii) Copy A evolves without any constraint;
copy B evolves with (e )? # 1.
(iv) Copy A evolves with (a§)? = 1;

copy B evolves with (af)? # 1.

Evolution (i) implies that
(e, 1)} =< 6(as,1) > an

and (by using conditional probability)

< (e, 1)(1 — 8{ag. 1)) >

B —
[6(a? 1)) = <1-é(ag.1)>

(12)

where we have used ergodicity. By replacing Egs. (11) and (12) into Eq..
(9) we straightforwardly obtain

_ PP I'r(i,0)
Fy; = Fy(evolution(i)) = =< boa ) (13)
Evolution (i1) implies that
[6((]:4’1)] — < 6(0.‘,1)6(&01 1) >

<blas.1)> | (14};
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Since copy B evolves here as it did in evolution (i), Eq. (12) still holds. By
replacing Eqs. (12) and (14) into Eq. (9) we obtain
T'p(i,0)

F; = Fi(evolution(ii)) = <Hao 1) > (- <8ea D) 5) {(15)
Evolution (iii) implies that -
[8((af)?,1)] =< §(ad,1) > (16)
as well as
By 3y _ <8led, 1)1 - 8(a3.1)) > 1y
By replacing Eqs. (16) and (17) into Eq. (10} we obtain
- iy I'(:.0)
Fy, = Fy(evolution(iit)) = < i 1) > (18)
Finally, evolution (iv) implies that "\
A2 — < 6(“?1 1)6(&3, 1)> : . _. .
- Eqs. (17) (which still holds) and (19) replaced into Eq. (10) yield
Fy; = Fy(evolution(iv)) = T4(:,0) (20)

< &{a, 1) > (1- < 8{aj, 1) >)
By inversing Eqs. (13), (15), (18) and (20} we easily obtain < é(ag,1} >.
< §(a2,1) >, Tr(4,0) and T'i(i,0) as explicit functions of F;, Fiz2, Fn and
F3,. Also, we recall that

é(a?,1) = 8(a;,1) + 6(a;,—1) (V) (21)

Finally, by using translational invariance {i.e., < f(a;) > independs from

gite ¢ for an arbitrary function f, and < g{a;, ;) > only depends on the
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relative position of site # with respect to site 7 for an arbitrary function g)

we obtain
my = % -5 (22)
mp = 2% - ;,"—2 | (23)
Ciij) = (P = Fn) (24)
Frt.5) = F2(Fy - Fu) (25)

To summarize let us say that we have established nontrivial relations
between relevant thermal quantities and spread of damage ones. These re-

lations provide an interesting manner for calculating, at all temperatures

and arbitrary lattices, thermostatistical averages by numerically perform-

ing time averages on specific damages. The present r{esults generalize those
contained in {2] which, in turn, had generalized those in [1].

Errata of [2}: (i) Delete the number 2 in the denominator of Eq. (9);
(ii) Replace the number 1 by m in the denominator of Eq. (12).

We acknowledge partial support from CNPq and CAPES (Bra.zi]it;n

agencies).
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