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ABSTRACT

The inverse problem of General Relativity is solved;
Einstein equations for a static spherically - symmetric perfect
fluid are integrated from the given (measurable) orbital
velocity of circular geodesics, which thus fixes both the
geometry generated by and the equation of state of the
fluid. The features of the matter content of a region are
therefore determined from the (observed) rotational velocities

in its surroundings.

Key-words: Inverse problem in General Relativity; Spiral

galaxies; Spherical symmetric relativistic model.
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Relativistic static spherically-symmetric ideal fluids
describe adequately certain final stages of stellar
evolution. In fact, when nuclear fuel has been exhausted,
radiation pressure can no longer counteract gravitational
forces and the star undergoes gravitational collapse resulting
in a highly dense distribution of matter which renders a
relativistic description unavoidable (1]. On the other hand,
under the depicted conditions viscosity and heat conduction can

be ignored and the stellar fluid can be modeled by

T = (P +pPuu, - py,, Bt

where p is the pressure, p is the matter density, = is the
metric and u” is the 4-velocity of the fluid particles.
If Einstein equations are written for the most general

static spherically symmetric line element
ds® = e2¥gt? - e M gr? - r330? (2)

one finds after some algebra that the problem problem can be
reduced to (the so called Tolman - Oppénheimer - Volkov

equation for stellar interiors)

dp _ _ (ptp) (2m+pr’) (3)
dr 2r(r—-2m)
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where
m(r) -_Qﬂlrrgp(r)dr (4)

is the (geometric) mass up to a distance r from the center of

forces.
Egq. (3) 1is the relativistic generalization of the
Newtonian equation of hydrostatic support [2].

The relativistic analogue of Laplace equation,

a@ _ 2m(r) + pr’ 5
ar " Ir(r-2m(T)] (5)

is also deduced from Egqs. (2) and it serves to find one of the
metric coefficients (roughly speaking, & is the gravitational

potential). The other one is given by

-1
L2V [1 _ 2m( !]

r

(6)

The system of differential equations must be supplemented
with an equation of state p = p(p)}.

The usual method of integration consists in arbitrarily
singling out an equation of state; for some lucky choices, Eg.
(3} can be analytically solved. Once p(r) has been found, p(r)

is determined through the equation of state, and the metric



CBPF-NF-034/90

coefficients from Egs. (5) and (6).

An alternative method, which presents some mathematical
advantages, in which the unknown functions are determined in
dependently, rather than sequentially, has been deviced
[3,4}. As we will prove, that approach is full of physical
significance in the sense that the geometry as well as the
thermodynamics are determined from a single measurable
quantity.

Let us briefly recall the above mentioned scheme. Given

the auxiliary function

_r - 2m(r (7)

it can be proven [4]) that

1 H(r) e )
p(r) = - 2+ + e [p e [ dr] (8.2)
r® ° '[ r’-g¢
p(r) = —;'[Gp‘ + 6'p + =(r + 6" - 2c)] (8.b)
r r
20 _ 1 r?
e _-fexp—I—G-dr (8.c)

L2V [1 _ 2_111(5)__]“1 (8.4)
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+r?) (6Y+r?) ar
G(r’-6)

where H(r) = I (6 (9)

and p, is an integration constant.

Notice that once G is (arbitrarily) chosen, the metric
coefficients and the the equation of state given by expressions
(8) are univocally determined.

In order to get some physical insight regarding the
meaning of G let us study the geodesic motion of a test
particle in the metric given by (2).

As t and ¢ are cyclic variables, two constants of the

motion can be readily found:

£ = £ = constant {10)

and

r’¢ = L = constant (11)

where the dot stands for differentiation with respect to the
arc - length.
Rather than writing the r component of the geodesic, it

is simpler to consider the normalization condition uu =1 for
2
T

the 4-velocity, with 6 = —5i

. ¢2
r-==1 (12)
r

- 2
ez¢82 - e

{use has been made 10 and 11}.
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Circular orbits are found by imposing r= 0 = ¥:

(13)
(14)

Any metric must be well behaved at infinity if it describes a

(localized) physical objects. By virtue of Birkhoff theorem, a
junction of the solution considered and Schwarzschild exterior

solution must be performed for some r,
The orbital velocity of the test particle as measured by

an observer at infinite is given by

V¢ = re?fan (15)

Then,

2
¥ - I 2 & ar (16)

From egs. (8.c) and Eq. (15), the relation between G and v

can be found

3
(17)
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It is worthwhile to reconsider in the present frame some
physically relevant solutions.

Exterior Schwarzchild solution can be recovered by putting
p, = 0 and V° = M/r (M a constant) in expressions above or
equivalent G = -~ rz(r - 2M) in expressions (8) (see ref. 3).

Observational data regarding the orbital velocity of many
spiral galaxies have been reported during the 1last decade
suggesting the presence of great amounts of non - luminous
matter surrounding their central 1luminous c¢ore [5]. Exact
relativistic models taking into account the above observations
can be constructed (6,7). The measured profile of the
orbital velocity v, of spiral galaxies [5]1 shows that

b

Voo o~ r®, with 0 < a < 1. 1In that case, from (Eq. 17) we get

1 3

G=-T¥m " (18)
and the corresponding solution is given by [8,9]
r 8
p=pr +— (19.a)
r
p = pAr + = (19.b)
r
2a
ezQ =f (15.c)
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-7—
e =1-V+ e pr” (19.4)
i+ 2a Po .
where
_ 2a(l-a
r = £4222 (20)
2
o = a - (21)
1 + 2a - a
3 - a
a=323 (22)
Z - 1{(2-a) (23)

1+ 2a-a°

To summarize, we have exhibited a scheme that allows the
complete determination of the geometry and the thermodynamics
of a static spherically symmetric distribution of an ideal
fluid, from the measured orbital velocity profile. In other
words, we have succeeded in solving explicitly the inverse
problem of General Relativity by finding the metric from the

geodesics.
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