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ABSTRACT

We use Monte Carlo simulation to study new features of the (one-dimensional) Domany-
Kinzel cellular automaton (CA). Considering the relaxation process of the “magnetiza-
tion” (the frozen-active order parameter) towards its equilibrium value, we measure its
dynamical critical exponent z. Also, We investigate the effect of py # 0 (nonvanishing
external field conjugate to the magnetization) on the phase diagram and on the suscep-
tibility. Finally, we introduce constraints in the evolution rule of the Domany-Kinzel CA
and study the associated criticality (critical surfaces and universality classes).

Key-Words: Cellular Automaton; Monte Carlo; Critical Dynamics; Susceptibility




CBPF-NF-033/93. -

_.-'1'_-

‘1 Introduction

Cellular automata (CA) are totally discrete dynamical systems (discrete space, discrete
time and discrete number of states) which provide simple models for a great number of
problems in science. CA has frequently been used to model chemical reactions, crystal
growth models, turbulence, neural networks, biological systems, or other nonlinear pro-
cesses far from thermal equilibrium {1}. But it is not only the CA praticality in simulating
differential equations, like fluid dynamics, that explain the recent great interest in CA. If
the deep nature of space-time turns out to be discrete, CA, and not only the traditional
differential equations, could be a helpful description of the physical world.

In the CA context, the discrete space is represented by a regular lattice and with
each site i of the lattice one associates a variable o; which can take k different values
o;=0, 1,---,k = 1. The CA time evolution is defined, at each time step, by local rules
where the value o; at time t depends, in a deterministic or probabilistic way, on the state
of the system at time ¢t — 1. All the sites are simultaneously updated at each time step.
Since its dynamics is not restricted to the usual Boltzmann weight and detailed balance,
CA do not mecessarily evolve, in the large time asymptotic limit, towards the standard -
thermal equilibrium. .

The study of CA is a very interesting one because of their fastinating intrinsic dy-
namics. The attractors can present spatial and/or temporal modulations of various kinds
as well as spatial and/or temporal chaos. Also, the time evolution towards the attractors
often exhibits interesting types of sensitivity to the initial conditions (with or without
damage spread) [2]. Finally, order parameters characterizing the various possible attrac-
tors {“phases”} can be studied as well, thus enabling the establishment of the CA phase
diagram with all sorts of critical phenomena, critical exponents and universality classes.
Various types of susceptibilities and relaxation times can be analised as well.

In this paper, some of the above relevant properties of the (one-dimensional) Domany-
Kinzel CA are investigated with some detail, through Monte Carlo simulations. In these
simulations we used, for each set of parameters defining the CA, a quite large number
(typically up to 100) of random starting configurations where all states were equally
probable. In section 2 we recall the model and its phase diagram. In section 3 the
magnetization relaxation process towards its equilibrium value is studied. In section 4 we
investigate the influence of an uniform external field (conjugate to the magnetization) on
the phase diagram as well as on the susceptibility. Finally, in section 5 we introduce a
constraint in the evolution rule of the CA and discuss the associated criticality (critical
surface and universality classes). We conclude in section 6. '
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2 The Domany-Kinzel CA

Although d-dimensional (probabilistic) CA describe processes that might be far from
equilibrium, they can frequently be mapped onto (d+1)-dimensional statistical- mechanics
models {3]. The corresponding spin model is, in general, anisotropic and involves multispin
interactions and fields, with coupling constants related to the parameters (conditional
probabilities) which specify the evolution rule of the CA. Therefore it is not surprising
that even one-dimensional CA exhibit continuous phase transitions with universal critical
exponents and scaling laws.

The one-dimensional CA considered by Domany and Kinzel [4] consists of a linear
chain of N lattice sites (i = 1,2,---, N), with periodic boundary conditions. Each site
has two possible states o; = 0,1. The state of the system at time t is specified by the set
{o:}. At the next time step, the state of a given site is cr‘(t +1) = 0 or 1 according to
the conditional probabilities { P(oi_1(t),0:(1)/ai(t + 1))} ,i.e. p(00/1), p(10/1), p(01/1)
and p(11/1). We shall study the isotropic case p(01/1) = p(10/1} = py, p(11/1) = p, and
p(OO/l) = po. Naturally P(a._,,a',/(}) = 1 — P(0;_1,0i/1). A possible application of this
CA is to model catalysis in chemical reactions [5]. The Domany-Kinzel CA contains, as -
special cases, the problem of directed percolation and directed compact percolation [6,7]
on the square lattice.

Depending on the values of {p;,p;), the { — oo asymptotic state is homogeneous
with all sites 0 {frozen phase) or has a finite fraction of interchanging sites with value 1
(active phase). These two phases are connected through a continuous phase transition
(characterized by universal critical exponents) as demonstrated in the original work of
Domany and Kinzel. Recently, it has been shown numerically, on a generalized version
which includes anisotropy, that the active phase splits in fact into two phases, only one
of them being chaotic.[8]. These numerical results received further confirmation by more
extensive simulations [9], as well as through mean-field-like approximations [9,10]. The
complete phase diagram for the original, isotropic Domany-Kinzel CA is depicted in Fig.1
(8].

The order parameters characterizing the three phases are the magnetization M, defined
as the fraction of sites with value 1, and the normalized Hamming distance ¥ , defined
as the fraction of sites that differ between two different initial configurations evolving
under the same noise (i.e., the same random numbers sequence). In the chaotic phase,
the automaton is sensitive to the initial conditions and an “initial damage”, created by
flipping randomly a fraction p of the sites of a given configuration, spreads through the
entire CA. Thus in the frozen phase we have M = 0 and ¥ = 0; in the active phase
M # 0 and ¥ = 0; and in the chaotic phase M # 0 and ¥ # 0. Let us add that
comparison between the present p, = 1 results and those associated with the directed
compact percolation must be done with care since it is not obvious that M is proportional
to the order parameter introduced in [6,7).
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3 The Time Evolution of the Magnetization

In the computational calculation of say the frozen-active critical surface, it is necessary
to evolve the automaton until it reaches equilibrium evaluating, at each time step, the
order parameter M. So, the automaton evolves until there are no large fluctuations of the
magnetization. The Figs 2.a and 2.b show the order parameter M; as a function of time
for two sets of conditional probabilities which correspond to points in the frozen phase,
respectively far from and near to the critical surface. The behavior of the transient of
M, for a point which belongs to the non-frozen phase and which is far from the critical
surface is shown in Fig. 2.c. We observe in Fig. 2 that the transient near the critical
surface is longer than far from this surface; it is expected that the necessary time for the
magnetization to reach equilibrium diverges on the critical surface in the thermodynamical
limit { N — o0). '

As one can see from Fig. 2, the magnetization shows an exponential decay towards
its equilibrium value according to the formula

M; — Moo ~ G-qf. (1)

where, strictly speaking, Mo = lim oo imy_oo M (not to be confused with Hmp .o limy_.o M;,
which generically vanishes, as pointed by Carter [11]). Near the critical surface we expect
that the characteristic relaxation time 7 obeys the power law

T |p1 —- pre| (2)

However, for computational simplicity, instead of determining 7 (and its exponent z)
from the exponential decay of the magnetization, we measure directly the total time 7*

necessary for the magnetization to reach its equilibrium value. Since 7* is proportional
to 7, Eq. (2) leads to

™~ |p — | ™* (3)

at fixed p;. This expression defines the relaxation time critical exponent z for this order
parameter. In Fig. 3 we present a typical log-log plot of 7 X |p; — pic|. As a result of
these simulations we find z = 1.0 £ 0.03. Since these simulations are in fact very large
ones (involving up to 10° time steps in a system with 12800 sites, the largest ever done
on this CA, as far as we know), we believe that the exact value is z = 1.

There is also a similar relaxation process associated with the normalized Hamming
distance W, the order parameter of the active-chaotic phase transition. This process can
possibly be characterized by a distinct value for the critical exponent z.
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4 The Effect of an Uniform External “Field”

If one considers pg = p(00/1) = 0, it is obvious that, if the configuration of the system is
zero (i.e., all the sites have state 0) at time t, it will remain zero for all subsequent time
steps ( M = 0 ). On the other hand, if po # 0 and the system is at the configuration
zero at time t, it will acquire a nonvanishing fraction of sites with states different from
zero ( M, # 0 ), at subsequent time steps. The probability pq is, consequently, analog to
an external field in ferromagnets, which destroys the phase transition. This is the reason
for only considering legal rules (po = 0) in the Domany-Kinzel CA when we investigate
the frozen-active critical surface.

If we now consider py # 0, the frozen-active critical surface disappears but the active-
chaotic one remains, as it is shown in Fig.4. We can also study the associated susceptibility

= M
X= Bpo o’

(4)

We calculate this derivative numerically. Although this method is not very accurate,
we used it because of the lack of a fluctuation-dissipation-like relation valid in the frozen
phase. In Fig.5 we show the susceptibility for p, = 0.1. This curve shows, besides
the expected tendency towards divergence at the frozen-active critical surface, a small
peak at the chaotic-active critical surface. Although hard to understand, we observe
systematically a secondary peak at the left side of the central one. It should be noted
that more extensives simulations are necessary in order to calculate the critical exponent
associated with the susceptibility divergence. '

5 Constrained Dynamics

The results we have presented up to now have been obtained by using independent random
numbers for updating each one of the N sites at each time t. Let us now generalize this
by introducing constraints in the Domany-Kinzel CA. The constraints we shall consider
consist in using the same random numbers to update n (1 < n < N) neighbouring sites
(the same set of groups of n sites each for all times). The n = 1 model recovers the
original CA; the n = N is an extreme case for which a single random number is used for
updating the entire generation. The phase diagram for various n is shown in Fig.6. In the
n = N — oo limit, the p; = 0 phase diagram exhibits a frozen phase almost everywhere
since the frozen-active and the active-chaotic critical lines have collapsed onto the p; = 1
line and/or onto the py = 1 line. This fact cannot be considered as surprising since, in
the n = N — oo limit, the system becomes one-dimensional-like in space-time (whereas
it is two-dimensional for finite n and N — oo). Moreover, we can see from this phase
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diagram (Fig.6.a) that the frozen phase area Ay tends to unity whercas the active area A,
as well as the chaotic area A, tend to zero when n increases from 1 to infinity; in addition,
we verify that the ratio A,/A. decreases with increasing n. Hence, tendency towards
a “totalitarian” limit (seme random number for all the elements of a given generation)
decreases chaos, but decreases even more (certain type of) activity!

An important question remains to be answered: the constraints we have introduced
in the CA do modify the known universality classes of this model? To investigate this we
studied the magnetization critical exponent § as a function of the constraints range n.
Our results are shown in Fig.7 and indicate that the universality classes in the constrained
and in the original cases are the same, excepting for n = N — oo, This fact cannot be
considered as completely surprising since each block of n constrained sites behaves, in
some sense, at criticality, as if it was a unique effective site of the original Domany-Kinzel

CA. '

6 Conclusions

We have studied, by Monte Carlo simulation, some important prOp*erties of the isotropic
{one-dimensional) Domany-Kinzel cellular automaton. A study of the relaxation process
towards cquilibrium of the frozen-active phase transition order parateter was done and
its relaxation time exponent was determined. The influence of the conditional probability
po = p(00/1) was analised. Although this probability is the field conjugate to the mag-
netization, it does not destroy the active-chaotic phase transition. Considering py # 0
we present preliminary results about the susceptibility for this CA, which besides the
tendency towards divergence at the frozen-active critical surface exhibits sensitivity to
the active-chaotic transition. Also, we have generalized the Domany-Kinzel cellular au-
tomaton in the sense that one updates a block of n (1 € n £ N) sites using the same
random number. Then we calculated the n-evolution of the phase diagram. Finally, we
found that the universality classes for the constrained case are the same as those of the
original Domany-Kinzel CA.
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FIGURE CAPTIONS

Figure 1. p(00/1)=0 and p(10/1)=p(01/1) (isotropic) phase diagram. The data corre-
spond to simulations with 3200 sites; transients of 10000 (3000) time steps were used
for the frozen-active (active-chaotic) phase transitions. The damage was averaged over
another 30000 time steps.

Figure 2. The order parameter M; as a function of time t for a particular set of conditional
probabilities. All the figures are for p; = p(11/1) = 0.50 and for (a) p; = p(10/1) =
p(01/1) = 0.72, (b) p, = 0.7845 and (c) p; = 0.80. Insets: the same in semi-log plot.
At this value of p; the frozen-active critical point is at p;, o 0.785. The two first sets of
conditional probabilities (a and b) belong to the frozen phase, while the last one (c) is at
the non-frozen phase.

Figure 3. Log-log plot of 7* versus (pi. — p;) in the isotropic case. The data correspond
to simulations with 3200 (®) and 12800 (O). The full lines are guides to the eye.

Figure 4. Phase diagram for the isotropic case (p(10/1) = p(01/ 1)) and arbitrary py =
p(00/1).

Figure 5. Susceptibility x = %lm_o obtained numerically for p(11/1) = 0.1. The data

used to take the numerical derivative of M corresponds to pp =~ 10~* (03) and po =~ 10-5
(*). The system consists of 3200 sites.

Figure 6. p(00/1) = 0 and p(10/1) = p(01/1) phase diagram of the CA for n > 1 (
n = 1 recovers the original Domany-Kinzel CA). (a) Full p(10/1) = p(01/1) space; (b)
n-evolution of the p(10/1) = p(01/1) = 1 critical point; (c) n-evolution of the p(11/1) =0
critical point. The dashed lines are guides to the eye.

Figure 7. Magnetization critical exponent 8 as a function of the constraints range n for
p(11/1) = 0.7. The data correspond to simulations with 3200 or 6400 sites; transients of
50000 time steps were used for the frozen-active phase transition.The magnetization was
averaged over another 100000 time steps.



ple(ll/lll

1.0-

0.5

0.0

-

FROZEN

00

p, = PO/« P (01 /1)

Fig. 1

CBPF-NF-033/93



(a)

CBPF-NF-033/93

-8

1600

1200

'Illlli 1 T llll|l1 1 1 llillli 1 1 o

1.0 +
0.8 -

= (1)Nd

Fig. 2(a)




(b)

CBPF-NF-033/93

o

3 3

_Eg "Eg

3 ¥
N
(@]
O
(]

& )

o.

o

o

o

~N

1.0 ~

4 —

o (1)wo

Fig. 2(b)

%

0.8 -




CBPF-NF-033/93

oo&oo¢

/]

oo&oom

|

OOLOQN

oomooP

1

-10-

(2)

00

¢Q

¥0

90

80

!

(WK

Fig. 2(c)



CBPF-NF-033/93

.JMH . UﬁAmH

0l

- Ol

rf-_ 1 I 11 ._._ I

—‘ 1- -

60°1 = =2doI1s

Fig. 3




CRPF-NF-033/93

-12~
\ plti/1)
3
A Y
1
)
1
FROZEN : ACTNVE
\
A
]
'
\
\
1
\
1
oL —
p(OI/1)=
* p(10/1)
CHADTIC
f

pl00/1)

Fig. 4.




CBPF-NF-033/93

13-

O_w.o 8 w\_h.o ?_n.o Ns_n.o 0L0
o | D O
g, . !
¥ a o
.ﬂ 1]
Q o o
o
Lo - 052
" ok
jutod ku._nu..nu.o . - 00S ._m..a
OTjOoRYO-3ATIOE
* »
) _ - 0GL
yead
. K1epuooeg
jurod TesT3TIO
BATIOR-UDZOIT

- 0001



CBPF-NF-033/93

1w
o (b)
10 e__\_\__-‘ - 10
(a) \ v, (b)
A )
% &1 - l
! > 0
Pl ! ! E p 1/}
H t < : ‘\ ACTIVE
T oo o0k
FROZEN ¢ n.4§ 4 \\1~
. Q*PU e PR - ———
Y £
ne =
AT (2 - CHAOTIC
YA L
¢ : “ i 0 i ll/-i i
° o 10 oVie a4 vz . 1
p {O0/1) = p(i10/1) .
L0
v
. \‘\ (c)
LY
\\
plto/m "\ (p(11/1) e 0}
\\
\\
08} %, CHAOTIC
~\
A
\
EROZEN N
‘\
\
\\
/8 .
0.8 ] 1{ 1 1 \¢
0INne  1/4 1/2 h
\/n

(c)

Fig. 6




CBPF-NF-033/93

—15-

0.60 -~

O
= B
Tg)
L
L)
o -
0 -uq\\“-
. o —
T
= N
o
0
0
o
I -}
-
)
= 2
o o




CBPF-NF-033/93 -

. -

REFERENCES

[1 ] D. Farmer, T. Toffoli and S. Wolfram, eds., Cellular Automata. Physica (Ams-
terdam), 10D (1984) vols. 1 ; S. Wolfram, “Theory and Applications of Cellular
Automata”, (World Scientific, Singapore, 1986)

[2 ] C. Tsallis , to appear in “Condensed Matter Theories”, 8, L. Blum.,ed. (Plenum,
New York, 1992);

[3 ] P. Rujan, J. Stat. Phys. 49, 139 (1987); A. Georges and P. Le Doussal, J. Stat.
Phys. 54, 1011 (1989);

[4 ] E. Domany and W. Kinzel, Phys. Rev. Lett. 53, 447 (1984); W. Kinzel, Z. Phys. B
58, 229 (1985);

[5 ] N. L. Jaeger, K. Mdller and P. J. Plath, J. Chem. Soc., Faraday Trans. 1 82,3315
(1986); P. J. Plath, Catal. today3475 (1988); P. J. Plath K. Moller and N. L.
Jaeger, J. Chem. Soc., Faraday Trans. 1 84,1751 (1988);

[6 ] J. W. Essam, J. Phys. A: Math. Gen. 22,4927 (1989);

[7 ] J. W. Essam and W. Tanlakishani, “ Disorder in Physical Systems ”, G. R. Grimmett
and D. J. A. Welsh, Eds., Oxford University Press, Oxford, (1987});

[8 ] M. L. Martins, H. F. Verona de Resende, C.Tsallis and A. C. N. de Magalhies, Phys.
Rev. Lett. 66,2045 (1991);

[#]G. A. Kohrmg and M. Schreckenberg, J. Phys. I France 2, 2033 (1992).
[10 ] T. Tomé, private communication (1993).

“[11 ] J. A. Carter, private communication (1992).



