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ABSTRACT

Arbitrary (1,1) and (1.0) two-dimensional non-linear
g-models, modified by the addition of coupling terms which explicitly
break supersymmetry, are studied. The geometrical meaning of these
additional terms is discussed. Supergraph methods, suitably extended
to include the case of broken supersymmetry, are set and employed in
explicit higher-loop computations to keep track of the effect that the
explicit breaking of supersymmetry has on the ultraviolet behaviour of
the originally supersymmetric models.
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1.Introduction

Two-dimensional supersymmetric non-linear g-models provide a very attractive
connection between extended supersymmetries and complex manifold theory[l -
5]. While simple supersymmetry sets no constraints on the nature of the target
manifold, the existence of additional supersymmetries is guaranteed by taking a

Kahler manifold, while N = 4 is realized when the manifold is hyperkahler.

The quantum corrections modify the structure of the manifold, but the exis-
tence of further supersymmetries strongly constrains the form of the counterterms
[6 —9]. In particular, when the manifold is hyperkihler, the theory is so constrained
that it is on-shell ultraviolet finite to all orders in perturbation theory[10—13]. This
outstanding link between extended supersymmetries, complex manifold geometry
and ultraviolet finiteness would be sufficient to justify the considerable amount of

attention one pays to the study of the supersymmetric non-linear ¢-models.

More recently, however, with the resurgence of slring theorics, the interest
in these two-dimensional models has been much more stressed. The reason being
that o-models defined on a Riemann surface and taking values in an arbitrary d-
dimensional Riemannian space keep a close relationship with string theories[14 —25].
Actually, the dynamics of a supersiring propagating in a fixed background space-
time can be described by a two-dimensional supersymmetric non-linear o-model.
If the superstring i3 of the Green- Schwarz type, the models of relevance are those

with N = 2. Instead, in connection with the heterotic string, the models which
arise are the so-called (2,0} supersymmetric non-linear o-models. The latter belong
to a more general category: the (p,g¢) models, whose construction is based on P

right-handed and q left-handed independent Majorana generators(18].

The conformal invariance required for the consistency of the string theory has
its counterpart in the finiteness of the associated non-linear o- model. In the case
of a purely gravitational background, Ricci-flatness of the target manifold is the

constraint stemming from the requirement of finiteness at the first non-trivial order
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in perturbation theory(9]. If the background is also characterized by the presence of
a rank-two anti-symmetric tensor, one ends up with a torsion for the target space

and a supersymmetric generalized Wess-Zumino term accounts for this fact{26-33].

In the present work, we endeavour to investigate how strong the world- sheet
supersymmetry is for the requirement of conformal invariance or, in other words,
for the finiteness of the associated non-linear o-model. To do that, we shall add
several terms which respect all the symmetries but supersymmetry of the o-model
classical action; they are terms which explicitly break simple supersymmetry. Using
suitably modified superspace Feynman rules which account for the explict breakings
of supersymmetry[34)], we shall pursue our investigation of the ultraviolet divergence

structure of the o-models modified by the inclusion of these breaking terms.

By performing explicit supergraph calculations, we shall see that finiteness can
be achieved at higher-loop orders provided that the additional breaking terms sat-
isfy certain conditions. Nevertheless, we shall notice that the cases of (1, 1) and
(1,0) supersymmetry present remarkable differences in what concerns the new su-
persymmetric divergent terms induced by the breaking of supersymmetry. The
B-function of the former receives contributions proportional to the breaking param-
eters from higher loops whereas, for the latter, new contributions appear already
at one loop. The basic reason for such a difference is that in the (1,0) case Lorentz
invariance imposes the presence of a higher number of field derivatives appearing

in the supersymmetry breaking vertices.

The outline of our work is as fqilows. In Section 2, we present and discuss
several terms which may have interesting consequences in breaking (1,1) super-
symmetry. The modified super-Feynman rules are derived in detail and applied to
derive three- and {our-loop contributions to the metric tensor f-function. In Section
3, we focus our attention on the possible ways of breaking (1,0) supersymmetry.
Suitably modified supergraph calculations are displayed and a one-loop finite o-

mode} with the torsion generated by an explicit breaking term is presented. The
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two-loop analysis of such a model is briefly commented. Finally, in Section 4,we
present some concluding remarks. Two appendices follow. In Appendix A, we list
the relevant operators for performing calculations in broken (1,1) supersymmetry
and give their multiplicative table. The analogous for the .(1,0] case can be found

in Appendix-B.



CBPF-NF-033/8%

e

2. Softly broken N =1 D = 2 supersymmetric non-linear o-models

In this section, explicit breaking terms of N =1 D = 2 supersymmelry are
added to the N = 1 non-linear o-model action. With the help of supergraph
methods, we shall analyse the structure of ultraviolet divergences induced by the
breaking terms. Especially, we wish to investigate how the breaking parameters
modify the f-function of the exact o-model and then understand whether the Ricci-

flatness condition can be relaxed without loosing the conformal invariance.

Before going over into the o-model calculations, let us start by discussing N=1
supersymmetry in the presence of mass breaking terms which shall play some réle

when dealing with the o-models.

The following {anti-) commutation relations for N = 1 supersymimetry in two

dimensions will be of use in the course of our algebraic manipulations:

{Da,6p} = Casp, (2.1)
[D?,84] = Da, (2.2)
[Da, 0% = b, (2.3)
[D?,8%] = -1+ 0*D,, (2.4)
where .
Do =8, +10%84, (2.5)

0 is a Majorana spinor and C is the charge conjugation matrix. We shall adopt here

the notation and conventions of ref.[35].
Scalar superfields, ®(z,0), are defined by the lollowing projections:
A(I) = ¢(3a 0) =0=0: (26}

¥(z) = Do®(z,0)lo=0 (2.7)
and

F(z) = D*®(z,0)lo=0- (2.8)
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A{x) and F(z) are respectively physical and auxiliary scalars and ¥(z) is the phys-

ical fermionic component of &(z,8).

Considering now a set of scalar superfields, &'(z, 8) (i = 1,..,M), we add to

the quadratic supersymmetric action,
Lo= —% / d?0(D*3°)(D,®") + % / d?0M; ;3 %7, (2.9)

terms which explicitly break N = 1 supersymmetry and whose net effect is to shift
the masses of the physical scalar and fermion fields accommodated in &*(z,0). They

are collected into the breaking Lagrangian, £p, given by:
1 157 api y
Lg= -2-/(1202["1?,-@ o7 +,U.,','(D ‘I")(Da(b’)], (2.10)
where m? and y are real and symmetric M x M mass matrices.

Putting the Lagrangians (2.9) and (2.10) together, we shail derive the expres-
sion for the superpropagator < & & > in such a way to take the breaking param-
eters, m?j and p;;, into account to all orders. The most genereal expression for the

superpropagator has in principle the following form:

12
P(z;,ﬂ;; 32,92) = —(1 -+ Z: XnAu(Il,gl))(Df + M)'lcSz(zl - 22)62(01 - 32),
n=l

(2.11)

where the coellicients X, are c-number valued M x Af matrices to be determined.

The explicit expressions for the operators A,, and their raultiplicative table can be

found in Appendix A.

Taking into account that the truly independent operators are just A, Ay, Ay,

Ag and A3, the general expression for the superpropagator of eq.(2.11) reduces to

P(zl,ﬁl;zg,ﬁg) = -(1+XA2+YA.|+ZA3+‘VA12)(D?+AI)-'162(2:1—:2)52(01—02),

2.12)
with the matrices X, Y, Z and W being determined from

(1+A)X +0CZ = -4, (2.13a)
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CX+(1+A)Z =-C, (2.13b)
2(A-B)X-(1+2A-B)Y +20CZ =B (2.13¢)
and _
2i0CX-2i0(A-B)Z+(1+2A-B)W=D. (2.134)

A, B, C and D are matrices expressed in terms of the mass matrices M, m? and u:

1

= 2
A= S P (Mp +m®), (2.14a)

1 2
B= I'.‘l_-—M’—-mﬂ(zM“.{-m )s (2.145)
C= iEI —35 = (2.14c¢)

and
= 1 2

D= ST =2 {(Mm? + 2u0). (2.144d)

After manipulating the algebra of the D's and &'s, we find that our superpropagators

take the following final form:
P(k;0;,83) =< T(®(1)2(2)) >= a(k?){D? — M)6%(8,2) — B(k2)07 D1.6%(012)+

— (k)02 D267(8,12) + in(k?)k"8,, D1 p6%(012) — e(k?)036%(012),  (2.15)

where
a(k?) = P 5;2 e (2.16a)
B(k?) = Xa(k*)M +iZk%a(k?), (2.16b)
(k%) = Ya(k®)M - Wa(k?), (2.16¢)
n(k?) = iXa(k?) + Za(K®)M (2.16d)
and
e(k?) = Y K a(k?) + Walk?)M. (2.16e)

It can be easily checked that, by setting the breaking parameters m.?_,. and p;y to

zero, we recover the superpropagators of the usual supersymmetric treatment.
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We now turn to o-model considerations. We first add to the action of the

N =1 supersymmetric non-linear o-model,
S = _% / 2d%6g,;(3)(D"9)( D D7), (2.17)

new coupling terms which explicitly break supersymmetry but, contrary to the
mass terms appearing in (2.10), respect the diffeomorphism invariance of the target

manifold. The terms we propose to study here are:
: f d*2d?08% g, () (D) (Dad7) (2.18)

and
-1- / d*zd?00° AR ;i (®)(D*2*) (Do ®') DP %) (D, 3%}, (2-19)

where u and A are respectively mass dimensional and dimensionless parameters and

R;jxi is the Riemann tensor of the target space.

The breaking term (2.18), besides modifying the coupling between the physical
scalars and fermions of the o-model, may also shift the masses of the liclds .
Indeed, when the target manifold is a homogeneous space like the n-sphere, for
example, g is nothing but the mass of the fermionic cotnpouent lields. As for
the breaking term (2.19), masses are not shifted; it only alfects the scalar-spinor
couplings of the originally supersymmetric o-model and, for a suitable clioice of

A, the quartic spinor coupling by means of the Riemann tensor can be completely

suppressed,

Following now the usual procedure of the normal coordinate expansion, one can
show that, with the help of (2.15) and (2.16), the superpropagator for the quantum

field £* reads as below:

B 1 X o o
ST WER) >= 8 D16 (01) + 6 2 (07 Dot

+203DF + kap07 DY + 2462)6%(0,5), (2.20)

where the index a labels the local frame coordinates of the target space.
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With our method for deriving the superpropagators including the breaking
terms (2.10), the parameter u appearing in (2.18) can be summed up to all orders
in the superpropagator, which would ;orrespond to a sum of an infinite number
of insertions into the superpropagator of the exact supersjrnmetry case. However,
through the quantum-background vertices arising from (2.18) upon the normal co-
ordinate expansion, the parameter x4 has still to be taken into account when calcu-
lating graphs. As for the dimensionless coupling parameter A, its effect cannot be
introduced into the superpropagator < £2¢% >. It plays the réle of a usual coupling
constant associated to the quantum-background vertices stemming from the normal

coordinate expansion of (2.16).

We are now ready to start presenting and discussing the results of the loop

corrections involving the supersymmetry breaking parameters.

Besides the well-known metric tensor renormalization of the exact supersym-
melry case[6], the tadpole supergraph of fig.1 induces a renormalization of the

supersymmetry breaking term {2.19) by means of the contribution:

1 1 4 : :
- dzﬂﬂ:'\(EDritD”‘mﬂcl + ER"LJR'“ J’kl](D“@‘)(Daq")(DﬂQJ)(Dﬂ¢k)'

32rme

(2.21)
Notice that such a renormalization is required in the cases of both jocally syminet-
ric and Ricci-flat target spaces. The mass breaking parameter 2 does not require
an independent renormalization: the metric tensor counterterm automatically re-
moves such an infinity. Actually, based on power-counting and reparametrization
invariance arguments, one can readily conclude that only the breaking parameter A,
and not u,can trigger divergent supersymmetric (i.e. non- explicitly ¢-dependent)
higher-order corrections into the effective action. However, at the one-loop approx-
imation, the supersymmetric contributions to the elfective action induced by the

supersymmetry breaking terms are all finite.
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FiG.1

Tadpole supergraph responsible for the one-loop infinities.

Considering, for example, the type of diagrams drawn in fig.2, one can show

that the following finite supersymmetric contributions to the effective action are

generated:
3 a’k 1 1 2 mn ¥ X 7 Axk I
ot | G k2+#2/d O Ripnn; i ™ ((D"8°) (D7) (D" 9*) (D)
(2.22)
and
1 d2k 1 2 1
P G+ =Rh .
55| G g | OB APyt G kit
1 1 1
ERh pqukhrmt + §Rh pquth + ERh punklmh)
(D"®°)(Da®')(D&*)(Dy%")(D"3')(D, ™), (2.23)

where m,,, denotes an infra-red cut-olf mass.
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FIG. 2
Finite one-loop diagram.

At the two-loop approximation, no genuine divergence (i.e., an infinity of the
type f) appears in connection with the metric tensor renormalization. Graphs
exhibiting the topology drawn in fig.3 do contribute divergent two-loop corrections
of order A to the metric tensor renormalization. However, such divergences are of
the type ;E-, and so they do not introduce any correction to the two-loop f#-function

of the exact model, which is known to be vanishing.

a b C

FIG.3

Divergent two-loop graphs.
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Going over to the three-loop approximation, the picture changes, as it could
already be expected from power-counting considerations. Indeed, by studying the
supergraphs whose topology is as shown in fig.4, and taking at the vertex 1 the
quantum-background coupling following from the normal .coordinate expansion of
the breaking term (2.19), one can show that a genuine % three-loop supersy mmetric
correction is induced which renormalizes g;; and is non-vanishing in the Ricci-flat

case. This divergent contribution is of the form
A f @%0 Ritmn R; ™ R™ 1y, (D 8°)( D7), (2-24)

and, as it can be checked, it is not cancelled against any other three-loop contribu-
tion. This result clearly shows that the breaking term {2.19) yields a non-zero three-
loop contribution to the metric tensor S-function of the non-linear o-model which
persists even when the target manifold is chosen to be Ricci-flat. This appears as
the lowest non-trivial contribution to Bi; induced by the breaking interaction term
of eq.(2.19). In the particular case of a maximally symmetric three-dimensional
target manilold, like the three-sphere, for example, such a correction turns out to

be identically vanishing.

FIG.4

Three-loop supergraph inducing an order-) correction to the B-function.

Finally, considering four-loop graphs, it can be shown that f-like supersyms-

metric corrections induced by the breaking term (2.19) are generated and contribute
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to the metric tensor §- function. This can be explicitly seen if we consider the four-
loop supergraph depicted in fig.5 and take at the vertex 1 the quantum-background
vertex associated to the coupling (2.19}). From the combination of such a vertex with
the supersymmetric part of the propagator (2.20), one canl show that the following

tensorial form is associated to this genuine four-loop divergent correction:
=t ! .25
A f ®0(D; Ritmn) (D RF o ') R D7) (Dad’) (2.25)

Such an infinity also survives the Ricci-flatness condition on the target space.

FIG.5

Four-loop supergraph inducing an order-A contribution to the B-function.

Therefore, as a final conclusion of this study, we can state that the curvature-
breaking term we add is soft in that it does not induce any new divergent contri-
bution to the effective action. The renormalization of the model is not spoiled in
its generalized sense and, for Ricci-flat gpaces, the metric tensor B-function receives

non-trivial additional terms from three (and not four, as-in the exact case) loops

CT.
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3. Broken (1,0) Supergraphity and A One-Loop Finite Contorted o-Model

The so-called two-dimensional {p,g) supersymmetries{18] have recentiy raised
a great interest due to the réle they play in the construction of the heterotic string
theory([36-40]. Their relevance is well-justified by the fact that the four-dimensional
effective theory, fqllowing from the string compactification, exhibils one unbroken
supersymmetry whenever the associated non-linear o-model has at least a (2,0)

world-sheet supersymimetry[41, 42].

The simplest case for which ps#q is the (1,0) supersymmetry. The (2,0} non-
linear o-model can be completely described in terms of the former with the second
supersymmetry being non-linearly realized[18)]. The (1,0) superspace has been fairly
well exploited and the corresponding supergraph techniques have been set in detail
and have proven to be very efective for calculations involving string world-sheet
supersymmetry([36-40]. We shall in this section extend the {(1,0) super-Feynman
rules in order to treat the case of broken supersymmetry while working in super-
space. They shall be next applied to a general (1,0) non-linear ¢-model to which
one adds a torsion-like term which breaks the (1,0) supersymmetry, and whose

finiteness shall be investigated through two loops.

The (1,0) superspace is parametrized by the coordinates Z4 = (zt,z7;0.),
where z%* are the usual light-cone coordinates and #_ is a left-handed (real) Ma-

jorana spinor. The corresponding supersymmetry covariant derivative is defined

by

D, = ia-‘:— +0_04 , D3 =1id,, (3.1)

where 94 = 5-21

The relevant "matter” superfields appearing in the furmulation of the (1,0} non-
linear o-models are the scalar, &(z,0_), and the spinor, A_(z, 8_), real superficlds,

whose respective §- expansions are given below:

$(z,0_) = A(z) — i0-v4(z), (3.2a)
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A_(z,0_) = A_(z) + 0_F(z). (3.26)
A, ¥4 and A_ are ali physical fields, whereas F is an auxiliary degree of freedom.

The supersymmetric kinetic and mass Lagrangians built up in terms of these

superfields read as below:

= - / df_(D4+8°)(3-9°) + / d0_A' DoAY + f do_M;;®'A%, (3-3)
where 1,7 =1,2,...,n are s;)me internal indices and M is a real n x n matrix.

The explicit breaking terms whose effect is to shift the masses of the physical

fields are collected in the following breaking Lagrangian:

ﬂbreukinq = /.dﬂ_ﬂ_mz@‘*ﬁ’. +_l./d0._0...#,'_f(D+¢‘.]A{_' (3.4)

where m? and y are real n x n matrices corresponding to the mass-breaking param-
eters.
Upon superspace partial integrations and use of a 2n X 2n matrix notation, the

quadratic superfield Lagrangians (3.3) and (3.4) can be combined and rewrillen as

given below:

L+ Loreaking = [ df_ (®° AL)O (A‘I:_) , (3.5)

where the label "t” stands for transposition in the internal space and the operator

O is a 2n X 2n matrix with superspace operator entries defined as:

ox(g g), (3.6)

with
A= 1A, + m’As, (3.70]
1 $
= M4 - 3.7
B =M+ Suds, (3.75)
e 8,
C = -M + =i A.g (3-75)
2 2
and

D=ia, (3.7d)
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The operators A;, Az, A3, A4 and As, their multiplicative table and some useful

inversion formulae can be found in the Appendix B.

Next, by coupling the quantum superfields to external sources, completing the
squares and formally performing the Gaussian integrations over ® and A_, one can

show that the superpropagators are given by:

<98 >=-2(4-8D74C)", (3.80)
<A_®>=D"'¢(4-8D"'()? (3.86)

and
<AA_>=-2(D~CA™'B)"" (3.8¢)

With the help of the multiplicative table and the inversion formulae collected

in the Appendix B, one obtains the following explicit expressions for the superprop-

agators in confliguration space:

< @(1)8(2) >= —(iD14 + P3,46,.) TP
1
— SMME — Lupt 4 IMpt + Ludt

6%z, — 22)8(0,- — 0,_), (3.90)

< A_(1)®(2) >= [M* — M PDy 0, + ipt(L — iP) Dy 40| —

1-P
- b
63z — 2,)6(0,_ ~ O,_ (3.95)
— IMAC - Lppt + IMut + Lud (x4 — 22)8{0, 2-)
and 1 ; .
- A2 = —(—a, D -0, _ .
<A-A-@) >=~(5701-D1s + 500075
(= 2 Mt M)~ 162(2y — 22)6(01- — 02-). (3.9¢)
2 0O1-—2m?

The matrices P and Q are delined by:

P= -—2:'({3-—-%bfﬂf'-lpu'+li'lrfu‘+ lm'vf')"[mg—%(;m' —Mpy® - uArt)]

2 2 2
(3.10a)
and
_3 ¢ 1 —1raqt ) t m?
=-£(1—-M —-——-.ﬂﬂ (Mp+pu'M+M a-—;—aﬂrf Ml‘)"‘

2m
' (3.100)
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Notice that in these expressions the breaking parameters mfj and u;; have been

taken into account to all orders with our method for inverting the operator O of

eq.(3.6).

One can also introduce explicit breaking coupling terms for the superfields &
and A_. Restricting ourselves to the case of dimensionless coupling parameters,

possible interactions are:

L= ids / d0_0_P(®)(D43) (D4 7)(3_ %) (3.11a)

and
L= / d§..0_ P(®)(D4+AL)(D4AY). (3.118)

The Feynman rules for such a type of vertices can be directly read off from the
corresponding interaction Lagrangians, with an associated #_-factor. Care has to

be taken with the anti-commutative character of the variable #_,

We are now ready to apply these results to a general (1,0) non-linear ¢-model

to which one adds new couplings which break supersymmetry.,

The basic relations to be employed in our loop calculations with broken super-

symmetry are:

(D4, 0.} =1, (3.12a)

D14 6(01- —02_)o,=0, =

and

Dy 0,-6(01- —02_}0,0, = —10,_.

The superspace action for an arbitrary (1,0) non-linear e-model with the Wess-

Zumino term is known{26-28] to be given by:
§ = [ dado_lg (@) + By (@D, 0_2),  (319)

where B;; is an anti-symmetric tensor defined on M.
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Our next step, and this is our main goal, is to find reparametrization invariant
coupling terms which explicit break (1,0) supersymmetry. Restricting ourselves to
those interaction terms governed by a dimensionless coupling parameter,), the only

vertex we can build up which fulfill these requirements and affect the spinor-scalar

couplings is given by:
Coreaking = iX / d0_0_T;;3(3)(D48°)(D4 87)(0_0%), (3.14)
where T;;x(®) is a tensor globally defined over the target manifold. Since only its

anti-symmetric part in the first two indices appears in (3.14), there is no loss of

generality in taking Ti;x to be anti-symmetric in ij.

In order to find a geometrical interpretation for the breaking term (3.14), let

us consider its component-field expression which is readily shown to be:
Ebreak-‘ng = ilTi;'k (A)'I’:-"’ia—-Ak (3.15)

Taking now the component-field fermionic Lagrangian arising from the action (3.13},

and bringing it togheter with (3.15), the ¢4 -field Lagrangian can be shown to read:

£ferrrn'ouic = -iQ.J(A)'fJi.(V-'fM)'f' (3'16)
where the covariant derivative V_ is defined to be

(Vothy) =0, + I (0~ A"~ (3.17)
g s i3 the connection containing the ChristofTel symbol T'7 &;, the torsion term

induced by the Wess-Zumino action and an additional contribution generated by

our breaking Lagrangian:
4 i = T7 i (A) + H i(A) = AT? (A). (3.18)

Therefcre, a suitakle choice of the tensor T % in our breaking Lagrangian couid

be made in such a way to completely cancel out the torsion contributed by the Wess-

Zumino term. This would actually be the case if

T % = 'i'ff.','k. (3.19)
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On the other hand, if the Wess-Zumino term is not present, our breaking Lagrangian
by itself could describe the torsion to which the fermions ¥ couple. It is important
to notice that, though our torsion term explicitly breaks supersymmetry, as long as
the fermionic sector is concerned, it perfectly accounts for the torsion effects of the

target space.

Next, we start the discussion on the quantization of the model. To do that,
we proceed as it is usually done: the background field method is adopted and a
normal coordinate expansion in terms of the elementary quantum fluctuaction £*

("a” denotes the local frame index) is performed. The superpropagators we shall

employ in the course of our work are given by:

< €(1)€"(2) >= 6" LDy, (K)6(0,- — 02.). (3.20)

k
For our diagrammatic calculations, we read the Feynman rules for the vertices
directly from the quantum-background couplings following from the normal coor-

dinate expansions of (3.13) and {3.14), with the remark that the latter introduces

an explict §_-factor at each vertex with coupling parameter .

The tadpole graph of fig.1 gives the following contributions to the effective

action:
d*k D*DyB;: + R™ ;B R™ ;B D, % )(0.87
(2.”)2 k2 + 2 da [R‘.I + ( kg + my + m.a)]( + )( )
| (3.21)
and

2 rm "o
“]:{l.t\)/ (;i ?2 k2 :_pz fda 0- ID DlTuk + an myk + It Tunk + I Iuru)
2 2n ;

(D+2°)(D4+27)(3-9%), (3.22)

where p, stands for an infra-red cut-ofl mass.

The correction (3.21) contributes to the renormalization of the metric teasor,
whereas the result (3.22) renormalizes the breaking interaction (3.14). Tadpoles
with a (D4 ®°), (8-9°) or (D:','.Q")(D.r $7) sitting on the external leg of the graph
are all vanishing due to the supersymmetry algebra and arguments of symmetric

integration.
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Contrary to what happens for an arbitrary (1,1} non-linear o- model, super-

graphs of the type shown in fig.2 may contribute further one-loop infinities. We or-

ganize their contributions in three different categories: both vertices are taken from

the supersymmetric quantum—backgroﬁnd couplings, one is chosen supersymmetric

and the other of the supersymmetry-breaking type {graphs linear in A) and, finally,

both vertices are taken from the supersymmetry-breaking Lagrangian (graphs of

the order A32).

We list below the results we have found by calculating the supergraphs of the

type as drawn in ﬁg 2. At order A%, the divergent contributions we find are:

d2k 1 1

(27r)2 (2x)2 k2 +p3(k+p)2+u 2( +p)+(k+p)-

/ df_(DyxBi}(D*B' ;)(D48°)(3-87)

and

d*p 2k 1 1
@A) ) G e+ eyt P)-

[ df_{ Dy By)(D' B* ;)(D.%')(3.87).
They both contribute to the metric tensor renormalization.

The divergences encountered at the order X are listed below:

2('”/ (2n)? (332 i (NN

/ d8_0_ (D B,ii)(D™T; ™ )(D 4 8°) (D4 37) (3 %),

ek 11
2(:)\)/ e R DAL ki (k + p)-
[ d0-0_ (D Boi) (D"T; ™ ) (D4 8°)(D+ ) (3 2*),

2k
1) [ s [ e+ ek

f df_ (D™ B ) [T mm (D4 37) ~ 0~ DyTjnun( Dy 8"} (D4 #7) 4

— l.o_ TJ‘,..,"‘ (8... ‘I’j) l (a— ¢|') H

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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a2k 1 1
““""f @m)? ) G R (k+p)2

/ d8_ B™i( DpTimi)(D+.8°)(3_ 87} +

k+(k + p)-

~0-(DyDpTirn,) (D4 8%) (D4 8°)(3-27) +

+0-(DnTim;}{(D+3°)(0- D4 07) +

—i0_ (Do Tim;)(848)(9- 2], (3.28)
2k 1
(2«)2/(%)2&2 (HT parelkto)-(k+ )
/ d8-8_Bmn(D™T;; ")(D+8") (D4 8%) (3.29)

and

&
2(1,\)/(2")2 (%;‘, & = ),k+(k+p) (k +p)-

[ 8- BT ™ (D4 8%) - 0_(D, T ™) (D, 87)(D, ) +

—0_T; ™ (8, 9")]. (3.30)
It is interesting to notice the presence of supersymmetric corrections induced by

the breaking of supersymmetry and their contribution to the metric tensor renor-

malization.

Finally, taking both vertices to be of the supersymnmetry-breaking type, one
can show that there will not appear any order-A2 contribution to the metric tensor
renormalization. This can be understood since both 4_ coming from the vertices
cannot be simultaneously eaten up by operators D} coming from the loop upon
partial integrations. One of the §. will always remain untouched to produce a
contribution which explicitly breaks supersymmetry. Indeed, the only order-A?

infinity induced by this class of graphs is given by:

2k
4(ix?) / (2n)? (g,,.)z kl_z (% _:p)z(k + p)+ k-
f 400 Tunn(D™T; ™ c)(D+8°) (D4 87) (3 8%). (3.31)

Power-counting indicates that one-loop diagrams with at most three external
background lines may diverge. Actually, exphclt computations show that the super-

graph of fig.6 gives an infinite correctlon to the breaking term (3.14). Its expression
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is given by:

Cnge &?p d?k 1 1 1
2"”’[ (27)3 f (2r)3 k3 (k+p)2(k+p+0q)?

ko (k4 p)a (k4 o)y [ d0-0Tm (5" T4 (D 94)(D,09)(0-0%)
(3.32)

FIG.6

Divergent one-loop diagrams with the highest number of external legs.

As for the one-loop approximalion, these calculations sullice to Eive a goneral
picture. Besides the well-known modification of the metric tensor renormalization
due to the presence of the Wess-Zumino term[29-33], we obtain that, by virtue of an
interference with the latter, our torsion-like breaking piece alters the metric tensor
B-function by corrections of order A." However, if B;; = 0, our breaking coupling
does not interfere with the supersymmetric action governéd by g:; and the result
of Bi; for the exact model is not modified: it remains vanishing for Ricci-flat target

spaces,

Still, it is worthy to mention that the interference between the Wess-Zumino
term and our breaking Lagrangian leads to new divergent breaking terms of the

form

f d0_0_(D.3)(D49), (3.33)

f dﬂ_o-_(ng](a_D.&) (3.34)
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and
/ d9_6_(9.,9)(0-9) (3:35)

But, whenever B;; = 0, these new infinities are absent.

So, the final outcome of our one-loop analysis is the following: switching off
the Wess-Zumino term, and describing the torsion of the target manifold by means
of the breaking Lagrangian(3.14), we conclude that Ricci-flatness stil! suffices for
the vanishing of the metric tensor -function. No new breaking term is induced
and the supersymmetry breaking vertex itseif does not require any renormalization
provided that the tensor T;;x be covariantly constant with respect to the connection

without torsion and symmetric in the indices j,k.

These conditions work to eliminate many of the two-loop supergraphs. exhibit-
ing the topology as drawn in fig.3a. The only divergent correction arising from
such a type of diagrams contributes to renormalize the breaking vertex of eq.(3.14).
Moreover, this infinity is of the type ':lg and, since at one-loop there is no countert-
erm, one might expect that %-divergences coming from the graphs (3b) and (3¢)
cancel the above infinities. However, the important point to be noticed here is that
at two loops no new divergence of the type % shows up, so that no contributions to
the G-function appear at this order. One can then finally state that the conditions
imposed at one loop are sufficient to keep the metric tensor -function vanishing at

two loops if the target space is Ricci-Nat.
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4, Concluding remarks

We have in this work contemplated arbitrary (1,1) and (1,0} non-linear o-
models modified by the addition of terms which explicitly break supersymmetry.
They are chosen in such a way to respect the diffeomorphism invariance of the
target munifold and to be associated to a dimensionless breaking coupling
parameter.

In the (1,1} case, the breaking terms we have proposed to investigate do not
change the g-function of the exact model up to two loops. They lead to new

corrections to Bij from three loops on, and the contributions they induce do not
vanish for Ricci-flat manifolds.

As for the (1,0) case, the situation changes with respect to the (1,1} model.
Reparametrization and Lorentz invariances, along with the request of a dimension-
less coupling parameter, uniquely fix the form of the breaking term. Moreover,
such a term appears with an interesting geometrical interpretation: it describes
the torsion of the manifold to which the fermions of the model couple. Explicit
supergraph computations, suitably extended to include the case of broken super-
synmetry, show that the (1,0) model broken by the torsion-like term is one-loop
finite under certain assumptions on the torsion tensor introduced by means of the
supersynmetry breaking coupling. Also, at two loops the metric tensor g-function
keeps vanishing under the sume constraints on the torsion and for Ricci-lat
target manifolds.

Just to end our discussion, we would like to stress that the breaking of the
two-dimensional supersymmetry is not disastrous for the consistency of the
related string model. The breaking parameters and the geometry cun be suitably
adjusted in such a way to give a vémishing 8-function. This is the key ‘ingredient
for the unitarity of the string. On the other hand, since the breaking of the
world-sheet supersymmetry affccts the o-model g-function, and the latter provides
equations of motion from which one can integrate a string effective action, it
would be interesting to analyze how the breaking parameters appear at the level

of the q«'-corrected string effective action.
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Appendix A

We collect here the operators A, (n = 1,..,12) relevant for the calculations

carried out in Section 2. They are
A, = D3, Ar = aa,,Dw’Df’,

A2 =0%D,, Ag=08,40°D°,
Az = D°4,, | Ag = 8,,D"9°,
A(=6’D? Ay =D?D*0D,,
As = D%?, A, =D"9?D,D?,
Ag¢=D*0?°D,, A, =862
Due to the (anti-) commutation relations amongst the D's and @'s given in

eqs.(2.1) — (2.4), the truly independent operators can be shown to be just A, A,

As, Ag and A(p: all the others can be written as linear cormmbinalions of Lhem.
Indeed:
Az = -2+ A,

As = ~1+ Ay + A,
Ag = A + 24,
A7 = Ag +2i0 Aqa,
Ay = —Ag,

Ao =—14s +20 A2

and

A= Ao = —14g +20 A;5.

The independent operators can be shown to form a cJosed set under multipli-

cation, as it can be seen from the table below:
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Ay Az Aq Ay Agz
Ay o 24, +iA, ~Ay —idg + 04, -0 Ay A
A; -1'43 A —2A, 24, Ag.— 2i0 A7 2442
Ay OAg 24, —A, 200 A2 —-A1a
Ay "D A J_!'r 0 ~ [ Ag 0
Az Ay 0 0 | 0 0

Multlplicative table of the operators relevant in the case of broken (1,1) supersymmetry.
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Appendix B

We discuss here the operators An(n =1,..,5) relevant for our calculations with

broken (1,0} supersymmetry reported in Section 3. They are
A=D,,
Ay =90_D,,
As=D,0_,
Ay=0_D,

and

A5 =f_.

They can be shown to form a closed set under multiplication, according to the

table given below:

Ay Az Ay Ay A
A ia, o i3, Ag Ay — i3, Ay Aq
2
s _3 s 9 A+ & a_As
Az 2I;J 208_ _ EDAG t |+2.DI|5
Asl| sav-va,4s lia_a,+ % 045 iAy 0 0
A‘ !‘a+ Ar, _%n AS 0 I..A‘ 1Ag
Ag A, 3_A, iAg 0 0

Multiplicative table of the operators relevant in the case of broken (1,0} supersymmelry.

We give beiow three useful inversion formulae:

1
A..1=2.__ .
: IDA2

o |
ATl =2i=4
2 'D t
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and
1

(1 — RA3) 1+Rl_m

A:h

where R denotes a general c-valued matrix.
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