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ABSTRACT

A primordial net bosonic charge is introduced in the context
of the bulk-viscosity-driven inflationary models. The analysis is
carried through a macroscopic point of view. in the framework of
the causal thermodynamic theory. The conditions_ for having
exponential and generalized inflation are obtained. A
pPhenomenological expression for the bulk viscosity coefficient is
also derived,.
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I INTRODUCTION

Recently, an increasing attention has been paid on the bulk
viscosity phencomenon associated with the inflationary models of
the universell-6] In fact, the effect of bulk viscosity in an
expanding universe is to reduce the eguilibrium pressure. So, it
iz natural to ask if _ thizs effect could be strong enough to make
the effective pressure r;eeative. As is well Known, this is the
key condition for intflation,

Thermodynamic states _with negative pressure are metastable
and are not excluded by any law of nature. In general, these
states are connected with phase transitions (for example in an
overheated Van der Waals 1liquidf7)) ana for certain physical
systems the occurrence of negative pressure seems to be
inevitaplel8,9,10] These systems are hydrodynamically wunstable
for bubbles and cavities tformation and spontaneous c¢ollapse could
also be expectedf?). However, in the cosmological context, some
new features must be added. In fact, as was shown Dby
Whittakerf11d yn a stressed selfgravitating fluild described by
general relativity, the pressure alsc contributes to the
eftective gravitational mass. If this contribution is negative it
will act repulsively accelerating the cosmic expansion.
Therefore, a fluid out of thermodynamic eqguilibrium with negative
eftective pressure provides an alternative mechanism for
inflation.

More recently some authorsf{12) claimed that the bulk
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viscosity could not drive inflatien. They remarked that in the
framework ot kinetic theory, the pressure is always non negative.
Hence, it 1is 1important to know under which conditions the Kkinetic
approach can be applied toc the early universe, in particular, at
the epoch of the spontaneous symmetry breaking (S§B) of the grand
unified theory (GUT)F13],

A coherent Kkinetic-theoretic treatment can be accomplished
only if the system in question present a sufficient dailution
degree, The wvalidity of such approximation depends on the ratio
»1, where )\ ig& the mean free path and 1L is the mean
interparticle distance. By using that As(on)~1 anci Lxn(-173)
where o¢© 138 the interaction cross-section and n is the number
density, this ratio is easily estimated at the GUT era. In virtue
of the asymptotic freedom we have osxZ/TZ, where awm1s/40 is
the unitied c¢oupling strength. Now, by reasons that will be
presented Dellow we assume the existence of a primordial Bose-
Einatein condensate. So, nmq+N,T3 where q 18 the net bosonic
charge density and N,=(xS/30)(3gp+7-85gs) where gp and ¢y
denote the number of effectively massiess Dbosonic and “fermionic
degrees of {freedom, respectively. The term ‘"charge' is simply the
difference between Dbosons and antibosons numberfi415]
Therefore, it follows that

A

- = a—EN,_afa {1 «
L N,T3

)—2/3 (1.1)

Now considering' that at Ts1014 Gev the total number of particle
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species is =150, we have N,=50. Then, 1if the universe is
symmetric (q=0), A/Ls100 and the dilute gas approximation iz a
good one, but for instance, if q#106T3 then A/Lx1071, the
continuum GUT is dense and, in consequence, the kinetic approach
cannot Dbe applied.

Haber and Weldonf25.16) gshowed that the condensation
¢ritical temperature in a relativistic ideal Bose-Einstein gas 1is

given by

Te = (3qrmi 2, (1.2)

where m is the mass of the particles. in fact, the formula above
is wvalid only for T»m Dbdut it will Dbe sufficient for our
qualitative arguments. These authors also observed that 1f the
bosons are massless the critical temperature T, is infinite and
g0 all the net charge will Dbe in the Bose-Einstein condensed
ground state. This result is important in what will Dbe proposed
ahead. Note that Defore the GUT phase transition the leptoquark
gauge bosons are massless, thus all bosonic charge excess -will be
in the condensed phase. So, even when the charge density 1is high
this avoids the possibility of a superclosed universe, During the
phase transition these gauge bosons acquire a mass of order of
the GUT energy scale. In consequence, the critical temperature T,
in equation (1.2) will fall tc some finite value depending on the
magnitude of the primordial charge. For a high value of this

charge, the critical temperature T, can be higher than the
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universe temperature T. So, Jjust after the onset of the phase
transition it is possible for the superheavy bhosons to0 be in the
condensed phase. In this case, another kind of phase transition
should occur in virtue of the cosmic expansion. Note from (1.2)
that T, scales with R™372 whereas in an adiabatic expansion, the
untverse temperature T scales with R-1 {R 1s the =scale factor).
Therefore, as the expansion proceeds, Te decreases faster than T
and the decondensation preocess will be in course, This second
phasze transition could occur at the end of inflation and the
possible formation of vortex 1lines (as 1in superfluid helium)
could be relevant for the structure of the universel17]

If the charge excess 18 associated with the Higgs particles
some aspects of the above discussed qualitative picture must be
moditied. In this case, for example, Bose-Einstein condensation
and spontaneous symmetry breaking can occur simultaneously but
independently. Moreover, studying Bose-Einstein condensation in
the Weinberg-Salam model Kapustall8l gnoweda that the transition
temperature is raised. In principle, analogous results could be
derived for others gauge theoriles. This would be .interesting +for
our scenario since the irreversibilities are expected to he more
relevant if the GUT scale parameter is highertl]

our present Kknowledge of the GUT continuum is still gquite
limited, thus a thermodynamic apprecach might give a major
ftlexibility to the model. Detatls of the microscopic theory will
not be taken into consideration in this paper,

In a previous paper[ﬂ some resulis uniting inflation and
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bulk viscosity were obtained in the framework of a *“quasi-
stationary* or first order relativistic theory of dissipative
processes, This terminclogy has been largely adopted because the
quadrivector entropy flux contains only first order terms 1in
deviations from equilibrium. This paper made use ot the Eckart-
Weinberg’sf19,20} jformulation ¢(Landau and Lifshitzf213 approach
is also included in the above category). As 13 well known, these
theories contain several undesirable features. They lead to
parabolic differential egquations and %0 admit superiuminal
velocitiea for heat flow and viscosity propagations.‘ln addition,
the theory is nunstable and there is no well posed initial wvalue
problem for rotating fluidsfZ2l Now, Dbesides introducing a
chemical potential associated with a possible bhosconic primeval
charge, we Treanalyze the Dbulk-viscosity-4ariven inflationary
scenario in the context of a non-stationary (or transient)
relativistic thermodynamic theory, This theory was developed Dy
NUller[23) and 1sraeif24) anda solves the above cited problems
present in the first order theory. More detaijs will be given in
secticn 11.

We outlined this paper as follows: Section II establishes
the conditions for having exponential or generalizealZ25,26]
inflation and the framewcork of our approximations are presented.
In section III we obtain from a thermodynamical point of view the
expression for the Dbulk viscosity coefficient, the entropy

production and the duration of inflation.
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I1. CONDITIONS FOR INFLATION

We start supposing that ab initio the universe had a net
bosonic charge. Moreover, as is usual in the inflationary models,
we assume that: First, socme region of the universe with the size
about the horizon distance was hot (T2Tgpp) and cooled to the GUT
critical temperature before recollapsing. Second, this region was
sufticiently homogeneous and isotropic such that the Robertson-
Walker (RW) metric is a good approximation.

In the early times the contributions of the spatial
curvature were negligidble then, to descridbe the eeoinetry of  the

model during the inflation, we can use the flat RW metric
432 = ~4t? + R(1)E (ax2 + ay2 « az@), (2.1

where R is the scale factor.
We will work in the framework of a charged relativistic

simple fluial271 The functional dependence of the entropy flux

vector S<% is
S - S“(T"“L.J’J‘) (2-2)

where THM is the energy momentum tensor and J¥ is the charge {low

vector defined hy

J¥ = qul"\ (2.3)
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where ub is the velocity of the comoving observer. The Lorentz
invartance of the theory places a severe restriction on the form

of THM in 1local equilidbrium, that is:
THA - Puﬂu* + ph¥h | (2.4

where hPhzgidiubud 13 the projection tensor, P 1s the energy
density and p is the equilibrium pressure. Any other term in the
above TH represents a non-equilibrium process.

In a spatially homogeneous and isotropic spacetime the only
irreversible process that can appear in the eneréy—momentum

tensor is the Dbulk viscosity w so0 out of equilibrium we have
THA - Pu#ul + (p+m)hPA, (2.5)

In the Dbackground (2.1) the energy conservation law and

charge conservation law are given by:

P’ + (I:: + P + W) = O ("'-',-6).
and

q' + g6 = O (2.7)
where ©=3R'/R is the scalar expansion and ' means time

derivative.
In such a background the entropy flux vector S™ of the first

order thermodynamics is the same function of the equilibrium
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theory, but in the second order thermodynamics SM has its
functional form changed and in general depends on the non-
equilibrium terms that appears in the energy-momentum

tensorf24.27) In the present case SM* is given by

awa
S = (g0 - ——=) uM (2.8)
2T '
where o s the equjlibrium specific entropy (entropy per unit
of charge), T is the temperature and o is a coefficient to be

determined.

The specific entropy obeys the equilibrium Gibbs lawl28}
T do = d(p/q) + p A(L/P). 2.9)

Now we are ready to obtain the phenomenological relations which
ensure the growth of the entropy. Taking the dlvergence of SH

given by (2.8) we have, in the second order approximation,

S“’;}_,,= - = (9 + aw*). (2.10)
T

We used the equations (2.6,7,9) and the supposition that the time
derivative of the coetficient « is of first order. Observe that
¥, © and T’ are of first order Dbecause they vanish in

equilibrium.
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The asecond law of thermodynamics (svﬂsz) will Dbe satisfied

it ™ 1is given by (see eq. (2.10))
T = -f(8 + «w’), (2.11)

where the positive coefficient of Propertionality ¢ is the
bulk viscosity coefficient present in the first order theory, and
a = *7{, where <+ is the bulk relaxation time. Note that in
the second order approximation a transient term appears which can
€uarantee the causality of the theory.

We suppose that soon after the GUT rhase transition holds

the wusual eguation of state
P = (Y(T) - 1) p (2.12)

where ¥ is the "adiabatic tndex”. In fact, in the
thermodynamic derivation ot the above equation the Y
parameter is held constantf29), However, for a more realistic
treatment, the y index could bDe a slowly varying temperature
tunctionf30,31)  Moreover, the choice of the above equation of
state will permit us to uze the simple fluid approximation to the

material content which has more than ocne coamponent.

Let us now obtain the conditions for inflation. We will use

the Gibbs-Duhen  equation
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=10~
dp = qo AT + q a4, (2.13)
where
B=(p+pP)g-To (2.14)
i1s the relativistic bosonic chemical potential. In order to

guarantee the non negativity of the particle and antiparticle
number u must satisty |p-|$m. where m is the mass of the

bosonst14), we will also use the Einstein's #ield equation:

s 2
2 R BTP
HE = —*—2— = = (2.15)

where mp;=1.22x1019 GeV is the Planck mass.

Now, using (2.12-15) we have:

(1-y) ¥ 1 p ¥y T ug @ T
[c-——)——c———) (2.16)

Y H 2 Y T yp B T
where ¥y'=T'(dy~4T) and p.'='r'(ap/a'r)q+q'(ap/aq)-r. The
above equation generalizes the expression (13) of ref.[4). We

remark that in the cited paper the chemical potential was
incorrectly associated to the massleas to massive boson
transition. In {fact, the chemical potential is a state variable
associated with the existence of a conserved charge in the

system. Jt vanishes jif the net charge is zero.
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wile

From (2.16) w.e see that the condition for exponential

inflatien (H'=0) is given by:

¥’ b g T T .
(== =) =2 == (- — ). (2.17)
y T v » T

We must impose

»g '
—_ < 1 (2.18)
YP :
to ensure the non negativity of the entropy (see ed. {2.14})).

Observe that for an ideal Bose gas of particles of mass m this
relation is automatically satisfied Dbecause PZquq and y21.
From (2.17) we see that there are sevéral possibilities for
having exponential inflation: When u=0 we have the condition
In{y~T)=constant, that was obtained in re#f.[4]. Seemingly
this case is not physically accomplished, as for p=C the Aystem
will not be dense.
When 0O the following cases are readily obtained:
(a) y=«T and u=fT where « and B are constants.

(k) p=const and

y' T I
et -—) ¥ (2.19)
Y YP T

or equivalently ay-dT = qo/'b .
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-]2=-
{¢) y=const and
! p T
- = (1 = ) ~- (2.20)
T3 wq T '
or 4uw'dT = =-o

The cases a) and b) can represent a fluid that changes its
type as the temperature vary. For example, while the bosons
acquire mass durine the GUT phase transition, the equation of
state of the fluid could change from radiation-like toward dust-
1ike and after the Dosons decay return to radiation-like again.
In case c¢), during inflation, the chemical potential increases as
the temperature decreases.

On the other hand, from (2.14) the condition for generalized

inflation (R*/R>0 or H > -H'H > O) now takes the following form:

R’ Y Y' T g }.I-' T* .
-2 [(—-—-—-)—-—-—(——-—)])O. (e2.21)
R 2(y-1) Y T vp » T

It can also be shown that the condition (2.17) for exponential
inflation does not change if one includes a cosmological constant
A in the Einstein’s equation. However, the condition for

generalized 1inflation (2.21) changes 10

R. y A y: TI M l-l-' T'
- > Qa - —) [ (-~ =)} —— (——=)] >0 . (2.28)
R 2¢(y-1) 3HR Y T Yp » T
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IIlL THE BULK VISCOSITY COEFFICIENT, ENTROPY PRODUCTION AND

THE DURATION OF INFLATICN

Let wus obtain the Dbulk viscosity coefficient in the
exponential inflation casxe, Subsatituting P':O in (2.6) and using

(2.12) we have
T = -yp. (3.1)

Using the above equation in the constitutive equation (2.11) we

obtain

wl
£ = :qsfi + —), (3.2)
Y

where :qssz/BH is the bulk viscosity coetficient of the
quasi-stationary theoryf32] Note that except for the case c),
there 1s a transient term in addition to the expression of the
gquasi-statioconary theory. We can alsc express [ as a .function

of temperature. For example, for the case a) we have

£ T (1 «

) . {(3.3)

In the present model the temperature variation 1is not
determined Hy the dynamical egquations. In fact, the equations ot

motion are fully satisfied Dy the condition P’:O aAand by the
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ralation (3.1) 1in ihe exponential inflation c¢ase, while the
variation of the temperature depends on the detalls of the
transition bDbetween the phase where the bosons are massless and
the phase after when they acquire mass.

Let us analyze ihe eniropy production during the
inflationary period, In the nonstaticnary 't.hermodynamic theory

.the physical entropy density is given by (2.8) (s:—si-"up_), 20

Py
£ = go - —— {(3.4)
2tT
Using the equations (2.14), (3.1-2) and the charge conservatibn

law, we obtain from (3.4) that:

yp Kq
s = — (1 - 3vH/2) - —2 exp(~3H(t-t4)) (3.5)
T T

where 4q, 1s the charge density in the Deginning of the
inflationary period (t=t,). If <r=pu=0 the result of the ref.(4] is
reobtained, namely s:yP/T=constant. It €0 then the entropy
density 1is an increasing function of time for all cases a} to ¢).
For the cases a) and b) the last term of (3.5) Dbecomes negligible
tor At>H™1 (see the relation (2.18)) while the duration of
inflation is »H 1. The second order thermodynamic works well when
the second term in (3.4} is much smaller than the first one, that
happens when —H«l. The 1limit ot wvalidity of the second order

theory occurs when the terms are of the same order, that is ~+H=l.
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In the last case the entropy density would be z2mall and the
duration of intlation should be too long in order tc¢ solve the
flatness problem,

It iz easzy to estimate the duration of inflation Iin order to
solve the entropy problem in case a) when ~’'s0. As

Rz=RyexplH(t—~14}] then

1 Sg
At = — 1In(
3H sRy3

) (3.6)

where S; is the entropy at the end of inflation that is w1087,

Using H=1010 Gev, R #10712 Gev~! ana yp/T»1092 Gev3 follows
o]

that
1081
At = 10710 1n  Gev-i | (3.7
(1-3+H 2)
For +»z0 we have Ats107 32 aeg. Observe that as s is nearly

constant, the universe radiusz would increase by a factor of 1028,
that 13 enocugh t¢ solve the horizon, homogenelty and isotropy
pPuzzles.

In the present model, the entropy generation is concomitant
with the inflation, differently from the wvacuum-pressure-driven
intlationary models£33‘35]. where the entropy is generated after
inflation by a highly non adiabatic process. During the "slow
rollover phase” ot the new inflationary universe, the temperature.

should decrease 1028 times in order to maintain the radiation
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entropy constant. | Here, as the Dbulk viscosity reheats
continuously the medium, the temperature need not to decrease so
drastically,

As remarked in the introduction the material content remains
dense Jjust while the charge density is »T3. Inflation dailutes any
charge excess by a factar 21081, S0, admitting that at the end of
the intlationary phase the system has diluted, the charge density
will be 2Tf3 (we_ are not taking into account the possible
contributions of moncpoles, cosmic strings, ete.,, to enhance the
number density). Then, if the final temperature is not too low
the initial wvalue of q will be very high and could turn the model
mean.ineless. since p could Dbe greater than PPlanck' This problem
arise due the assumption that the gauge bosons acquire mass =104
GeV instantaneously and simultaneously. It can be avoidea 1if at
least one of these conditions is relaxed during the phase
transition.

We now use the 1limit of validity (msT) of equation (1.2) to
rough estimate the final decondensation critical temperature in
the 1iscthermal case. It is easy to see tihat 1f qfnT3 then TesT.
8ince the Deginning of inflation T, 1s a decreasing +function of
time then this estimate shows us that the decondensation process

will occur together with the dilution process.
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IV. CONCLUSION

In this paper we have considered the consequences of a net
bosonic charge present in the univérse during the inflationary
period. We have showed that even in the realm of asymptotic
freedom, the existence of a charge can avoid the validity of the
dilute gas approximation at the GUT epoch permitting the hulk
vigcosity +to gener'ate inflation. We have discussed the presence
of a Bose-Einstein condensation during the GUT phase transition
and pointed out that, due tc the universe expansion, it could
occur another phase transition representing the decondensation
process.

The conditions for inflation have been obtained in both
exponential and generalized case. ~ The expression for the bulk
viscosity coefficient that was previously derived has been
extended Dby wusing causal thermodynamic theory. We have alsc
showed thal in the context of this theory the duration of
inflation is longer. In the present model inflation ends by
dilution. As the universe expands the charge density decreases
and the ratio A/L Ddecomes »1., In this case bulk wviscosity can not
drive intlation anyvmore.

In the course of our investigation some zimplifications were
performed. Firstly, we have wuszed a 1linear approximation in the
thermodynamical phenomenological laws. Secondly, we have used
only one chemical potential, however more than one charge could

exist. Thirdly, we have descridbed the primordial cosmic plasma as
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a simple fluid with the equation of state given by (2.12). In
tact, we think that a more realistic treatment 1is necessary fTor a
full description of the universe at those eras. Further

investigations in this direction are being accomplished.
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