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Abstract

We present a simple Partial Differential Equation proof for the Atiyah-Singer

Index Theorem in the context of Dirac Operators on a Riemman Surface. Addin-

tionaly, we present a proof of the monotonic grown under the Ricci flux of the Dirac

Operator in the presence of a abelian Gauge Connection in a Riemman Surface.

1 The Atiyah-Singer Index Theorem

Dirac type operators in Riemannian manifolds are mathematical objects of cornerstone

importance in Differential Geometry ([1], [2], [3]) and with a growing usefulness in Quan-

tum Physics ([4], [5]). Unfortunately, many of the studies related to theory of Dirac

Operators are very sophisticated for applied scientists due to the use of sophisticated and

cumbersome methods of Algebraic Topology and Bundles Manifolds ([1]).

In this note, we intend to present in a relatively simple way and based in the ele-

mentary aspects of the Seeley Theory of Pseudo-Differential Operators, one of the most
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celebrated Differential Topological Theorem: The Atiyah-Singer Index Theorem which

(in one of its “palatable” version) says roughly that the trace of the evolution operator

associated to a certain class of Dirac Operators defined in two-dimensional orientable

compact Riemannian manifolds possess a manifold topological index – its Euler-Poincaré

gennus.

Let us thus start with A denoting an elliptic differential operator of second order

acting in the space C∞
c (R2)q×q formed by all these functions infinitely differentiable with

compact support in R2 and taking values in Mq×q(C) (the vector space of the complex

matrices q × q)

A =
∑
|α|≤2

aα(x)Dα
x (1)

where α = (α1, α2) are non-negative integers associated to the basic self-adjoint differential

operators

Dα
x =

(
1

i

∂

∂x1

)α1
(

1

i

∂

∂x2

)α2

(2)

with Aα(x) ∈ C∞
c (R2)q×q .

Let us now consider the (contractive) semi-group generated by the operator A through

the spectral calculus for operators in Banach spaces

exp(−tA) =
1

2πi

∮
bC dλ e−tλ

(
λ111ε×ε − A

)−1
(3)

where Ĉ is a given closed curve containing in its interior the spectrum of A : σ(A) which

is supposed to be in the semi-line R+.

According to Seeley ([1], ]2]); let us consider the operational symbol of the operator(
λ111q×q − A

)
which is defined by the relationship below

σ(A− λ111)(ξ)def = e−ixξ(A− λ111)eixξ =

∑
|α|≤2

Aα(x)(ξ1)
α1(ξ2)

α2

− λ111q×q

=
∑
|j|=0

Aj(x, ξ, λ) (4)

where for 0 ≤ j < 2

Aj(x, ξ, λ) =
∑

|α|=α1+α2=j

Aα(x)(ξ1)
α1(ξ2)

α2 (5-a)
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and for j = 2

A2(x, ξ, λ) = −λ111q×q +

 ∑
|α|=α1+α2=2

Aα(x)(ξ1)
α1(ξ2)

α2

 . (5-b)

Let us now consider the usual Fourier Transforms in L1(R2) ∩ L2(R2) with its opera-

tional rule

F̂ (ξ) =
1√
2π

∫
R2

d2x eiξx f(x) (6-a)

(Af)(x) =
1

(2π)2

∫
R2

d2ξ eixξ
[
σ(A)(x, ξ)

]
F̂ (ξ) (6-b)

At this point it is of a crucial importance to note that the functions aj(x, ξ, λ) are all

homogeneous functions of degree j when considered as functions of the variable ξ and
√

λ

aj(x, cξ, c2λ) = (cj)aj(x, ξ, λ). (7)

Now it is an important technical theorem of Seeley that the Green Function of the oper-

ator (A−λ111) has a symbol which is given by a serie of smooth functions
{
C−2−j(x, ξ)

}
j=0

in the Seeley topology

σ

(
(A− λ111)−1

)
=

∞∑
j=0

C−2−j(x, ξ). (8)

As a consequence of the above formulae, we have the following exactly formulae for

the Inverse of any Elliptic Inversible operator A(
A−1f

)
(x) =

∫ ∞

0

dt
(
e−tAf

)
(x)

=
∞∑

j=0

{
1

2πi

∫
d2ξ d2x d2y eiξ(x−y)

[∮
bC

C−2−j(x, ξ, λ)

λ
dλ

]
f(y)

}
(9)

A crucial observation can be made at this point. One can introduce a non-commutative

multiplicative operation among the Seeley symbols associated to Elliptic Operators A and

B acting on the domain C∞
c (R2)q×q . Namely

σ(A) ◦ σ(B)
def≡ σ(A ◦B) (10)

where A ◦B is the operator composition. Explicitly, we have that

σ(A) ◦ σ(B) =
∑
|α|=α

[
Dα

ξ σ(A)(x, ξ)
][

i Dα
x σ(B)(x, ξ)

]/
α! (11)
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Here

α! = α1! · α2! (12)

From the obvious relationship

(
A− λ111

)
◦
(
A− λ111

)−1
= 1 (13)

we have that

σ
(
A− λ111

)
◦ σ

((
A− λ111

)−1
)

= 1. (14)

As a consequence it yields the result 1

α!

∑
|α|≤2

(
Dα

ξ σ(A− λ111)(x, ξ)
)
i Dα

x

(
∞∑

j=0

C−2−j(x, ξ)

) = 1 (15)

or in on equivalent way

1

α!

∑
|α|≤2

{
∞∑

j=0

[(
Dα

ξ σ
(
A− λ111

)
(x, ξ)i Dα

ξ

(
C−2−j(x, ξ)

)]}
= 1. (16)

The above written equations can be solved by introducing the scaled variables (t > 0)

ξ = t ξ′ ; λ1/2 = t(λ′)1/2 (17)

and

C−2−j

(
x, tξ′,

((
tλ′
) 1

2
)2)

= t−(2+j) C−2−j(x, ξ′, λ′). (18)

After substituting eq.(18) into eq.(16) and by comparing the resulting power series

in the scale factor 1/t, one obtains the famous Seeley recurrence equations which for

t → 1, give us explicitly expressions of all Seeley coefficients {C(−2+j)(x, ξ)} of the Green

Function of the operator A (note that they are elements of Mq×q(C))

C−2(x, ξ) =
(
a2(x, ξ)

)−1
(19)

0 = a2(x, ξ)C−2−j(x, ξ) +
1

α!

 ∑
`<j

k−|α|−2−`=−j

(Dα
ξ ak(x, ξ))(i Dα

x C−2−`(x, ξ))

 (20)
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For the Laplacian like elliptic operator below:

A =−
(

g11(x1, x2)
∂2

∂x2
1

+ g22(x1, x2)
∂2

∂x2
2

)
111q×q

+
(
A1(x1, x2)

)
q×q

∂

∂x1

+
(
A2(x1, x2)

)
q×q

∂

∂x2

+
(
A0(x, x2)

)
q×q

(21)

where
{
g11(x), g22(x); x ∈ R2

}
are positive definite functions in C∞

c (R2)q×q , we can eval-

uate exactly the Seeley relationship eq.(20).

Now it is a tedious evaluation to see that (important exercise left to our readers) we

have the result

a2(x, ξ, λ) =
(
g11(x)ξ2

1 + g22(x)ξ2
2 − λ111

)
(22-a)

a1(x, ξ, λ) = −i A1(x)ξ1 − i A2(x)ξ2 (22-b)

a0(x, ξ, λ) = −A0(x) (22-c)

C−2(x, ξ, λ) =
(
g11(x)ξ2

1 + g22(x)ξ2
2 − λ111

)−1
(22-d)

c−3(x, ξ, λ) = i
(
A1(x)ξ1 + A2(x)ξ2

)(
C−2(x, ξ, λ)

)2
− 2i g11(x)ξ1

[(
∂

∂x1

g11

)
(x) ξ2

1 +

(
∂

∂x1

g22(x)

)
ξ2
2

]
×
(
C−2(x, ξ, λ)

)3
− 2i g22ξ2

[(
∂

∂x2

g11(x)

)
(ξ1)

2 +

(
∂

∂x2

g22(x)

)
(ξ2)

2

] (
C−2(x, ξ, λ)

)3
(22-e)

We now analyse the symbolic-operational Seeley expansion for the evolution semi-
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group eq.(3)

Tr(C∞c (R2))q×q

[
exp(−tA)

]
=

∞∑
j=0

(
1

2π

)2 ∫
R2

d2x σ(exp(−tA))(x, ξ)

=
∞∑

j=0

(
1

2π

)2
1

2πi

∫ −∞

+∞
d(is)eist

∫
R2×R2

d2x d3x C−2−j(x, ξ,−is)

=
∞∑

j=0

{
1

t

1

(2π)3

∫
R2

d2ξ

∫
R2

d2x

∫ +∞

−∞
eis C−2−j

(
x, ξ,

−is

t

)
ds

}

= −

{
∞∑

j=0

1

t

1

(2π)3

∫
R2×R2

d2x d2ξ

∫ +∞

−∞
eis(t)( 2+j

2
)C−2−j(x, t1/2ξ,−is)

}

=
∞∑

j=0

{
t

(j−2)
2 (2π)3

∫
R2

d2ξ

∫
R2

d2x

∫ +∞

−∞
ds C−2−j(x, ξ,−is)

}
(23)

After substituting eqs.(22) (together with the term C−4(x, ξ, λ) not writte here), we

have the Seeley short-time expansion for the Heat-Kernel evolution operator associated

to our Laplacean A as given by eq.(21).

TrC∞c (R2)q×q

[
exp(−tA)

]
t→0+

∼ 1

4πt

(∫
R2

d2x (
√

g11 g22) (x)

)
111q×q

+
1

4π

(∫
R2

d2x
√

g11 g22

(
−1

6
R(g)

))
111q×q

− 1

2
× 1
√

g11 g22

[(
∂

∂x1

(√
g11 g22 · A1

))
+

(
∂

∂x1

(√
g11 g22 · A1

))]
(x)

− 1

4

[
g̃11(A1)

2 + g̃33(A2)
2 + A0

]
(x) + O(t) (24)

Here R(g) is the curvature scalar associated to the metric tensor ds2 = g11(dx1)
2 +

g22(dx2)
2. The inverse metric is denoted by {g̃11, g̃22}.

Let us give a proof of the famous Atiyah-Singer index theorem in the context of the

Heat kernel PDE’s techniques.

Let us thus consider complex coordinates in a given (bounded) open subset W ⊂ R2,
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supposed to be a chart of a given Riemann Surface M.

z = x1 + i x2 ;
∂

∂z
=

∂

∂x1

− i
∂

∂x2

z = x1 − i x2
∂

∂z̄
=

∂

∂x1

+ i
∂

∂x2

For each integer j, let us introduce Hilbert Spaces H1 and Hj defined as ([5])

Hj =



vectorial set of all complex valued functions which under the

action of a complex coordinate transformation z = z(w) of W ,

has the tensorial like transformation law

f(z, z) = (∂w/∂z)−j f̃(w, w) (26)

We now introduce a Hilbertian Structure in Hj by the following inner product

(g, f)Hj
=

∫
R2

dz dz
(
ρ(z, z

)j+1
f(z, z) g(z, z) (27)

where ρ(z, z) denotes a real continuous function in W and provenient of a conformal

metrical structure in a given Riemann Surface with local chart W

ds2 = ρ(z, z)dz ∧ dz. (28)

The Hilbert Space Hj is defined in an analogous way to the definition eq.(26), but

with the dual tensor transformation law

f(z, z) =
((

∂w/∂z
))−j

f̃(w, w). (29)

As an exercise to our readers we have that the above inner products are invariant under

the action of the conformal (complex) coordinates transformations of the open set W .

Let us now introduce the following self-adjoint operators in L2(W );

Lj : Hj −→ H−(j+1)

f −→ ρj ∂z f
(30)

and its adjoint operator

L∗j : H−(j+1) −→ H(j

f −→ ρ−(j+1) ∂z f
(31)
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We consider the further positive definite (inversible) self-adjoint operators

Lj : L∗j Lj : Hj −→ Hj (32-a)

L∗j : Lj L+
j : H−(j+1) −→ H−(j+1) (32-b)

Note the explicitly expression:

Lj L∗j =
(
− ρ−1 ∂z∂z

)
+
(
(j + 1)ρ−1

(
∂z

(
`g ρ ∂z

)))
(33-a)

L∗j Lj =
(
− ρ−1 ∂z∂z

)
−
(
j ρ−1

(
∂z `g ρ ∂z

))
(33-b)

By using now the Seeley asymptotic expansion in C∞
c (R2) , we have the following

t → 0+ expansions for the Heat Kernels associated to the Dirac operator eq.(33) ([5])

lim
t→0+

TrC∞c (R2)2×2

(
exp

(
− tLjL∗j

))
=

∫
W

(
dz ∧ dz

2i

)(
ρ(z, z)

2πt
− (1 + 3j)

12π

(
∆`g ρ

)
(z, z)

)
+ O(t) (34-a)

lim
t→0+

TrC∞c (R2)2×2

(
exp

(
− tL∗jLj

))
=

∫
W

dz ∧ dz

2i

(
ρ(z, z)

2πt
+

(2 + 3j)

12π

(
∆`g ρ

)
(z, z)

)
+ O(t) (34-b)

Now the famous topological Heat Kernel index can be obtained easily through the

Atiyah-Singer definition.

index(Lj) = lim
j→0+

[
TrC∞c (R2)2×2

[exp(−tLjL∗j)− exp(−tL∗jLj)]
]

=
(1 + 2j)

4π

[∫
W

dz ∧ dz

2πi
ρ(z, z)

(
+

1

ρ(z, z)
∆`g ρ(z, z)

)]
=

(
1 + 2j

4π

)
χ(M) (35)

Here the curvature of the Riemann Surface M with metric ds2 = ρ(z, z) dz ∧ dz is given

by

R(z, z) =

(
1

ρ
∆ `g ρ

)
(z, z) (36)

which is related to the topological invariant of the Euler-Poincaré genus of M through

the Gauss theorem ∫
M

ρ(z, z)R(z, z) = 2π(2− 2g) (37)
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APPENDIX 1

Normalized Ricci Fluxes in Closed Riemann Surfaces

and the Dirac Operator in the Presence

of an Abelian Gauge Connection

In this short appendix 1 we want to expose a new result of ours on the Riemannian

Geometry of Riemann Suraces M. Let us thus consider the non linear parabolic PDE’s

equation governing the flux dynamics of a given metric hµν(x) in M. Namely

∂

∂t
hµν = (R0 −R)hµν (1)

where R is a scalar of curvature and R0 its mean value.

An important result in this subject of Ricci Fluxes is the famous theorem of Osgood-

Phillips-Sarnak, which show that in the class of all metrical structures with a fixed con-

formal structure, the determinant of the Laplace Operator takes its maximal value in the

metric of constant curvature ([1]). Let us present a generalization of such result for a Dirac

Operator in the presence of an Abelian Gauge Connection (with a fixed spin structure).

Theorem. The determinant of the Dirac Operator in the presence of a Abelian Gauge

connection in a Compact Orientable Riemann Manifold (equivalent to a Complex Curve

= Riemann Surface) has a monotonic grown under the Ricci flux.

Proof: Let us consider a Dirac Operator with a spin structure (vi, ui) in the presence of

a U(1) Abelian gauge connection which in the Physicists tensor notation reads as of as

([2]) /
D(A, ĥ) = i γa êµ

a

(
∂µ +

1

8
Wµ,ab(ê) εab γ5 + Aµ

)
. (2)

The matrices γµ = êµ
a γa are the (euclidean) Dirac matrices associated to the metrical

Riemann surface structure ĥµν = êµ
a êν

a . Note that ĥµν can be always written into the

canonical conformal form (ζ ∈M)

ĥµν(ζ) =
1

ρ(ζ)
h̃µν(ζ), (3)
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where h̃µν is the element representative of ĥµν in the Teichmiller modulo space of M.

We note too that the Abelian Gauge Connection (the Hodge abelian connection) has the

usual decomposition ([2])

Aµ = − εµν

√
h

∂µφ + AH
µ (4)

with

∇µ
(
Aµ − AH

µ

)
≡ 0. (5)

It is useful to remark that the effects of the non trivial topology of the genus of Riemann

SurfaceM reflects itself in the Hodge Harmonic term AH
µ of the U(1)-Connection through

the Abelian differential forms (and its respectives complex conjugates) ([2])

AH
µ = 2h

(
g∑

`=1

(p` α`
µ + g` β`

µ)

)
(6-a)

αi
µ = −Ωik(Ω− Ω)−1

ks wf
µ + c.c (6-b)

βi
µ = (Ω− Ω)−1

ij wj
µ + c.c (6-c)

The Riemann Surface Matrix Period Ω is defined by the usual homological relationships

(Abel Integrals) ∫
aj

αi = δij ;

∫
bi

βj = Ωij (7)

where {ai} and {bj} are the canonical homological cycles of M.

Let us now consider the variation of the (functional) determinant of the Dirac operator

det1/2(
/
D
/
D∗) = det(

/
D) in relation to an infinitesimal variation of the metric with a fixed

conformal class ([3])

∂

∂t
`g

{
det
(/
D(A, ĥ)

)
area(M) det(

/
D(A = 0, h̃))

}
=

1

π

∫
M

dz ∧ dz

2i

[
h̃zz(∂zϕ ∂zϕ)(z, z)

]
+

1

12π

∫
M

dz ∧ dz

2i
h̃zz
[
(`g ρ)t(`g ρ)zz

]
. (8)
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Note that this metrical variation is evaluated for the normalized Ricci flux below

∂

∂t
`g ρ ≡ [`g ρ]t = R0 −R (9-a)

R0 =
2π(2− g)

area(M)
(9-b)

R = −1

ρ
∂zz(`g ρ). (9-c)

As a consequence we have the positivity of the eq.(8)

∂

∂t
`g

{
det

/
D(A, ĥ)

area(M) det(
/
D(A = 0, h̃))

}
≥ 0 (10)

At this point we remark that eq.(10) vanishes solely for all those metric of constant

curvature, which at the asymptotic limit t →∞ leads us to the usual result (R → R0)∫
M

(R0 −R) R ·
√

h dz ∧ dz
t→∞−→ 0

since for t → ∞ all (smooth-C∞) metrics on M are attracted to the metric of constant

curvature under the action of Ricci Flux with a fixed area

(∫
M

√
ĥ

dz ∧ dz

2i
= area(M)

)
.


