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Abstract

Some of the consequences of Eyvind Wichmann’s contributions to modular theory and the QFT
phase-space structure are presented.

In order to show the power of those ideas in contemporary problems, I selected the issue of
algebraic holography as well as a new nonperturbative constructive approach (based on the modular
structur of wedge-localized algebras and modular inclusions) and show that these ideas are recent
consequences of the pathbreaking work which Wichmann together with his collaborator Bisognano

initiated in the mid 707,
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1 Wichmann’s Influence on Ideas in Local Quantum Physics

Looking at the various contributions to post perturbative quantum field theory, one could try to group
ideas, which shaped the form of our present understanding, into three classes. There are first those ideas
on nonperturbative frameworks whose’s usefulness was immediately obvious. The prime example would
be the time dependent scattering theory of Lehmann, Symanzik and Zimmermann[5]' which together
with the resulting stationary scattering formulas and combined with the dispersion theoretical frame-
work, marked the beginning of at least the (kinematical) setting of nonperturbative model-independent
thinking. This theory (or rather this framework) used the formalism of (interpolating) local fields and
their correlations. Fortunately there already existed at the time of start of LSZ a mathematically as
well as conceptually very concise setting for doing quantum field theory, namely the characterization
(of what used to be from the outset an operator theory) in terms of Wightman functions which gave
an excellent understanding of the general singular function nature of the correlation functions, as well
as of their analytic continuation aspects [4]. The conceptually important aspect of that framework was
of course the reconstructability of operators, states and Hilbert spaces from those functions; physicists
traditionally, since the times of Feynman’s great contributions, prefer to deal with functions and could
not have been completely sure that their description is complete. The addition of the LSZ formalism also
bridged the gap between Wightman’s pure field theory setting and the 1939 theory of one-particle spaces
as irreducible representation spaces of the Poincaré-group. This connection of field theory with particle
theory was later amplified in work by Weinberg [5] which linked Wigner’s particle theory with Feynman’s
perturbation theory (in fact the exposition of the Wigner theory, the historical remarks as well as the
presentation of the QED calculations constitute the high points of Weinberg’s textbook). From there on
it was clear that QFT, in contrast to classical field theory (viz. the particle models of the electron of
Poincaré and Lorentz), did already contain in principle all particle (including multi-particle scattering)
aspects, and even more, that there were methods and beautiful formulas which explicitly allowed to
extract those particle properties of fields.

In a way the Wigner theory of relativistic free particles was the first successful attempt to present
relativistic particles without referring to quantization (in this case of relativistic classical mechanics)
and in this way it was doing justice to the more fundamental nature of quantum over classical the-
ory. Because of this, Wigner’s theory became exemplifying for all attempts to formulate and execute
problems of local quantum physics (LQP) without relying on the quantization of classical expressions as
Lagrangians. One of its immediate successes was the classification of the plethora of physically equiv-
alent field equations, which physicist found in the aftermath of Dirac’s discovery for the description of
relativistic electrons/positrons.

This trend of finding more intrinsic descriptions for local quantum physics was one of the motives

LSince I did not intend this essay to become a review article, T will use texbook references whercever possible (from which

the reader may find an exposition of the content of the referred articles as well the reference to the original paper(s)).
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behind the algebraic approach initiated by Haa, which reached its first stage of mathematical maturity
(“the framework of Algebraic QFT”) in a often cited paper of Haag and Kastler. The guiding principle
there was a vast generalization of the idea of Wick, Wightman and Wigner on superselection sectors
from their univalence rule in the direction of superselected generalized charges. The emerging paradigm
of algebraic QFT was to view all of QFT, ie. including the issue of spin and statistics and scattering
theory, as the synthesis of the superselected representation theory of an (model dependent) underlying
observable algebra with the localization structure imposed by Einstein causality [1]12]{3]

This program required a formulation which was independent on "field coordinatizations” from the
very beginning. Wightman'’s approach [4] on the other hand was more conservative in that it used
field operators which in contradistinction to the neutral observables were allowed to carry charge and to
appear in multiplets acted upon by internal symmetry groups with the effect that for most of the time
it stayed closer to the very successful perturbative Lagrangian QFT. The conceptual relation between
these two approaches was clarified by Doplicher, Haag and Roberts as well as Borchers [1]; their detailed
mathematical connection offers some challenges up to date. But cven in the first comprehensive account
of the Wightman theory [4], these authors already went some distance to counteract the tendency of
overemphasizing the role of fields by pointing out that what is really relevant are equivalence classes
(Borchers classes) of relatively local fields.

While touching the issue of scattering theory, one should not leave unmentioned another well-embraced
idea of those early times: the S-matrix bootstrap approach. This was mainly Chew’s idea (with some
prior attempts in this direction by Heisenberg). In its extreme form of cleansing quantum fields and the
locality principle altogether from the arena of quantum physics, it eventually failed. But, even apart from
the useful pictures about effective interactions (as they were later obtained by qualitatively reading back
certain on-shell properties into QFT by Weinberg), it left some interesting structural elements behind
(see later); which is really a lot one can say as far as failed theories are concerned. In fact one may call it
the most successful among all failed theories of this century, a statement whose content will only become
comprehensible in the light of its relation to modular theory sketched at the end of this essay.

The reason I mention these trends and achievements of the 50-70%° is that, unlike most of his con-
temporaries in general QFT, Eyvind Wichmann, in whose honor I wrote the present essay, did not enter
general QFT directly but rather started his carrier with very detailed QED radiative correction calcula-
tions and came, after passing actively through other particle physics problems, permanently to Berkeley
as a result of his active interest in S-matrix theory and the dispersion relation approach.

But now it is time to get to the idea which is inexorably linked with the name of the Jubilar?, namely
the observation that QFT localization is related in a very deep way with the fundamental mathematical
modular theory for von Neumann algebras.

The first achievement in this direction culminates in a 1975 some seminal paper by Wichmann and

2 . . . . . . . .. .
2Ty tryving to translate the German “Jubilar” into short and precise English, my dictionary said: “the person whose

anniversary is being celebrated”. This is precisely the meaning, but not the type of short expression 1 was looking for.



CBPF-NF-032/99 4

(his at that time Ph.D. student) Bisognano [1]. It relates Tomita’s 1967 modular theory, dealing with
basic structural properties in von Neumann algebras, with fundamental structures of nonperturbative
QFT?. Already at the time of Tomita’s presentation of his theory at the 1967 Baton Rouge conference in
the US, there was a physics discovery which preempted certain aspects of Tomita’s theory. This was the
analysis by Haag, Hugenholtz and Winnink of thermal quantum physics directly done in the so called
thermodynamic limit of an infinite extended QFT*. Their crucial observation consisted in noticing that
a calculational trick, which appeared in previous works of Martin, Kubo and Schwinger (refereed to
as the KMS condition) takes on fundamental conceptual role in the physics of translational invariant
local statistical quantum systems [1]. Whereas Winnink immediately after the Baton Rouge conference,
where both results were presented independently, began to elaborate the deep connections in his thesis
with Hugenholtz, Haag and his collaborators succeeded to derive the KMS condition from the stability
properties of statistical mechanics equilibrium states [1]. This line of thinking culminated in the work of
Pusz and Woronowicz [1] by which the abstract Tomita modular theory, if enriched by the physical idea of
locality, got directly linked with the second fundamental law in thermodynamics, i.e. the impossibility to
construct perpetuum mobiles and all that. As a corollary, also the TCP symmetry of local QFT develops
another “modular” relation (in addition to the “detailed balance” relation) to equilibrium statistical
mechanics and in particular to the second fundamental law.

9o at the time when Wichmann with his collaborator Bisognano discovered the connection between
wedge localization of quantum fields and the modular objects of Tomita for this situation®, some of the
thermal (heat-bath) aspects were already well understood. It is very natural that this situation called
for an analysis of the Hawking-Unruh effect in those modular terms. But the first paper in this direction
was a contribution by G. Sewell [1].

Another line of research of Wichmann was his collaboration with D. Buchholz who, being familiar with
prior work by Haag and Swieca, brought Wichmann’s attention to this problem; the fruits of the joint
discussions finally led to further significant contributions to the clarification of the degrees of freedom or
phase space structure problems in QFT [1]. As many analogies of QM with LQP did not persist under
closer conceptual scrutiny, the clarification of the nature of LQP phase space was an important issue.

Already noted in the seminal work of Haag and Swieca [1], the counting with a “relativistic box”, i.e.

I Nowadays mostly referred to as the Tomita-Takesaki modular theory because it was M. Takesaki, who by his penctrating
analysis and improvements of Tomita’s result, contributed to its widespread acceptance within the commnunity of operator

algebraist (and finally led A, Connes amony other things to his classification of type I vou Neumanu factors).

AWhen the standard box-guantization produces a conceptual clash with other ideas, as it is the case for e.g. (time-
dependent) scattering theory or phase trausition propertics in statistical mechanics, it is clearly preferable to understand

the infinitely extended translationally invariant systeimns directly and to view finite systems as open subsystews,

i1n mathematical termms the problem was to compute the modular objects (anodular group and modular involution) for
the algebra generated by quantum fields smeared with functions which have their supports in a wedge within the vacuuin
represeutation. The modular group turned out to be the wedge associated Lorentz boost and the modular involution was
the TCP-like antiunitary reflection along the ridge of the wedge which maps the wedge into its Einstein-causal complement.

Clertain very special free ficld modular localization aspocts where already noticed before[12].
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for a Minkowski space double cone region together with a sharp energy cutoff, could not give a finite
number of degrees of freedom per phase space cell as in the case of the box in QM. Their rather rough
methods and estimates were improved in the Buchholz-Wichmann work and it became clear that the
correct counting could not be better than "nuclear”[1], not even in the interaction free case. It also gave
a deeper insight into a prior conjecture that quantum field theory should exhibit the “split property”
which is the statement that by allowing a “collar” region between the inside and the outside world of
a double cone (which is the QFT counterpart of the quantum mechanical space box), the total algebra
allows a tensor factorization of the inside and outside algebras which is not possible without that collar.
Later it turned out that this structure also had a deep relations with modular theory. A third line of
research of the Jubilar, which probably brought him to Berkeley, was on S-matrix theory. Here I am in
the comfortable position of being able to refer to Weinberg’s book where justice is done to Wichmann’s
S-matrix articles {5].

Wichmann’s contributions definitely belong to those ideas whicli, unlike e.g. LSZ, did not have a visible
connection to the immediate problems of particle physics nor could one draw upon them as a framework
in QFT as with the aforementioned contributions of Wightman as well as those of Haag, Kastler, Jost
and others. Like most of Borchers contributions, they were less of a systematic encyclopedic but rather
more of an enigmatic nature. Their power only unfolded slowly with time, and even up to date we are
still witnessing an accelerating unfolding process of the physical consequences of modular structures; a
fact which probably even Wichmann did not expect when he investigated this subject in the mid 70%es,

The enigmatic power of Wichmann’s modular ideas has been brought to light in many articles ranging
from thermal QFT to superselection structure i.e. the reconstruction of charge-carrying fields including
their statistics, symmetry properties and TCP structure which especially in low dimensions (left out
in Wightman’s framework) gives rise to very new and nontrivial problems related to modular theory
Cluiog

Rather than continuing the flow of history, I would like to try in the next section to exemplify the
power of modular ideas in the context of two very recent (and still unfolding) ideas: holography and a
new nonperturbative method (which still lacks a known catchy name) based on the structure of those
Bisognano-Wichmann wedge algebras.

Since holography, in the sense of encoding the content of a QFT into a lower dimensional one has,
especially in the context of QFT in AdS (Anti-deSitter spacetime) attracted a lot of attention, this
may be a good vehicle for demonstrating the power of modular ideas to a broader QFT knowlédgable
public. This is particularly the case in view of the perplexing aspects which holography and in particular
quantum matter in AdS presents to the standard quantization (Lagrangian or functional interaction)

approach. Most of these paradoxical aspects are naturally solved by algebraic QFT with the modular

6 Here the interested reader may also consult my recently 62 page review article (also containing additional more recent
references) which 1 dedicated to Evvind Wichmanu and accepted for publication iu JPA, but which I could not reproduce

in the special Festselift volume becanse of copyright laws.
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enrichment originating from the Bisognano and Wichmann work being the essential link between local
quantum physics and geometry of AdS [10] [11]. These are methods and concepts which are not yet
known outside a small circle of specialists, although the latter paper makes a great efforts to use rigorous
physical arguments and avoids the explicit evocation of modular theory (but rather derives it, because
all the arguments are of a general QFT nature). And even if, after all, the conceptual barriers for many
particle physicists will remain high (please dear reader, remember that you did not learn the sophisticated
differential geometry and topology many of you are using these days in less than a year!), their enthusiasm
for the AdS-conformal QFT connection may be of help here.

The constructive approach via the modular properties of wedge algebras which is taken as our second
illustration (which I initiated and pursued over the last years, partially with my collaborator H-W Wies-
brock) {12][13]{14], is best thought of as the inverse of the Bisognano-Wichmann theorem, namely using
the modular theory for the actual construction of quantum field theories. It shares with holography issue
the fact that a real understanding inside any framework based on “field-coordinatizations”, in particular
in any quantization approach, is impossible’ (or only possible with a mind which has the power of artistic
imagination). Here one is really hitting the limits of capabilities of what the quantization access to QFT
can do, and although analogies are always dangerous, I feel tempted to make a historical comparison with
Bohr-Sommerfeld rules (please don’t look down on them, they where quite successful for many problems,
but they demanded some artistry) versus full quantum mechanics.

Indeed everything you learned in text books (and which proved so useful in the pursuit of perturbation
theory) about standard quantum ficld theory, as interaction picture, time ordered correlations, canonical
quantization or quantization through euclidean functional integrals, all that is of no avail here. Of course
non of these well-known standard tools is typical for LQP¥, all of them can (and have been) applied to
QM as well, either in its Schrodinger or its so-called second quantized form. But the modular structure
in QFT on the other hand is totally characteristic and not shared by any other kind of quantum theory.

Anybody who is familiar with the conceptual framework of LQP knows that this is deeply related
to Einstein causality and the polarization structure of the vacuum resulting from that causality in the
presence of interactions, the denseness of localized states generated by acting with operators associated
with nonvanishing region’ whose causal complement is nontrivial, or the total different nature of local
algebras as compared to algebras of QM with consequences for quantum measurement theory [14]. Es-

pecially these last structural differences may be somewhat surprising (in the sense of low credibility) to

T At least if one does not solve the Lagrangian theory nonperturbatively and explicitly, and theu reprocesses the resulting

dynamical variables; an altogether impossible task.
*The reader may have noticed that whenever we want to eiuphasize the concepts of QFT but not necessarily their present

texthook iwplementations, we prefer the termonology LQP (local quantnm physics). This diminishes the unwarranted

(almost subconscious) tendency of the reader to equate QFT with cuclidean funcional represeutations and all that.

9T his property has been colloquially termed the “particle behind the moon” paradoxon, better known as the Reeh-
Sehlicder property or in mathematical language of von Nemmaun algebras as the cyelic and separating property of the
propert; guag s |3 )

vacnunl with respect to local algebras.
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somebody who has always thought about QFT just as a relativistic continuation of QM. Hyperfinite type
I1I, von Neumann factors, as the wedge localized algebras of QFT, have indeed very different properties

from the type I algebras of QM. They do not permit pure states at all'

, and they also, together with
their commutants, do not admit the notion of tensor product factorization of the total algebra B(H), dis-
entanglement and all the other old notions from von Neumann’s exposition of ()M, which recently have
been propped up for "quantum computation” [15]. In order to recover the usual quantum mechanical
structure of the inside/outside factorization of a Schrédinger box, one has to work quite hard and use
the Buchholz-Wichmann nuclearity property for the control of local degrees of freedom [1]. The resulting
“relativistic box” consists of a the inner region of a smaller double cone and the outer (infinite) spacetime
of a larger double cone, but note that the inside and the outside needs to be separated by a “collar region”
in order to attenuate the uncontrolled vacuum fluctuation caused by sharp boundaries (the latter trouble
already having been known to Heisenberg in his study of vacuum polarizations). As mentioned before,
this is known under the name of split situation or split inclusions.

There are many recent results from modular theory which all point into the same direction and
contain the same general message, namely one is dealing here with structures which, if at all, only with a
superhuman hindsight and extraordinary stretch of imagination are visible from a quantization framework.
Another convincing illustration not presented here, are the recently found “hidden symmetries” [16][17],
where the word hidden is used in the sense of hidden to the Lagrangian-Noether framework (and of course
not in the sense of the modular framework within which they were discovered). We also refrain from
presenting some very surprising results about the possibility of creating a local net in LQP together with
the full Poincaré symmetry from just a few (for chiral conformal theory 2, for d=1+2 theory 3 and for
d=1+3 theory 6 ) algebras in a certain modular position to each other [18][19]. Although algebraic QFT,
unlike string theory, is not designed to be quantum gravity, these findings about totally unexpected
relations between raw (highly noncommutative) algebraic data and spacetime geometry, although not
being directly related to quantum gravity, should be taken serious in any attempt towards quantum
gravity.

Another very important consequence of modular theory is the already mentioned thermal aspect which
it attributes to localization. In the case of “natural localizations” related to classical bifurcated Killing
horizons as they occur in black hole physics, this thermal aspect can, and as everybody knows, has been
discovered before modular theory. But for the general localization in QFT, which cannot be describe
in such classical metric properties, one really needs it. The modular localized subspaces are dense in
the Hilbert space of the full theory, but there is a natural “thermal” scalar product (the graph metric
defined by the unbounded Tomita operator S of that region) in terms of which it is closed. This thermal

inner product changes with the localization region of the local algebras, and it turns out to be related to

L0We follow here the by now standard termiuology to omit the prefix “normal” for states, and add the prefix singular for

the rare case of nonnormal states on vou Nenmann algebras.
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the domain problems of Wightman’s theory!! and possibly also to the construction of pointlike covariant
fields trom the net of local algebras. There is a speculative remark of Fredenhagen (privat communication)
which fits in very nicely with these physical aspects of field domains and ranges of actions of algebras
on the vacuum. It is the idea that a pointlike field, or rather the one-field subspace obtained by its
application to the vacuum, can he characterized as the carrier of an irreducible representation of some
(infinite dimensional) “universal modular group”. The latter is generated by all the one parametric
modular groups for all spacetime regions!?. This, if true (it is true for those QFT which have been by
the wedge localization method sketched in the next section), would make a rather pivotal addition (if
not revolution) in QFT as it has been hitherto understood since it attributes to pointlike fields the an
analogous intrinsic physical role as the Wigner positive energy representation theory of the Poincaré group.
In this way the “fields” would recover some of their lost ground (at least in the form of the mentioned
field spaces), when from the viewpoint of AQFT they became relegated to mere “coordinates” of algebras.
And much more: since the modular groups and their unitary implementers are expected to contain the
crucial information on interaction, they would gain in addition to the geometric properties they already
had in the quantization approach, the status of an intrinsic modular-based concept of interaction. To put
it into the context of the more concrete constructive nouperturbatve modular setting of the next section,
the incoming particle content of the interacting field (in terms of its formfactor spaces which appear in
their decomposition) would be governed by a new and subtle (hidden) kind if infinite-dimensional group
theory as a kind of analogue of the (overt) diffeomorphism group in chiral conformal field theory'®. The
characterization of special operators in such an algebra would then require the study of the relation to

modular subgroups belonging to finer localizations inside the chosen one.

2  Holography and the Constructive Approach to Wedge Alge-
bras

Holography is the conjectured correspondence between higher and (conformal) lower dimensional QFT
(or a family of lower dimensional ones). The attractive aspect of such a correspondence is that a lot
more is known about low-dimensional QFT, in particular conformal QFT, which could be of use for
the construction of higher dimensional QFT’s. Historically the idea can be traced back to the thermal

and geometric behavior of black hole (classical) entropies (Bekenstein, Hawking). Since the temperature

LA ctnally the Wightman domain is related to the intersections of adl (thermal) modular domains. This is quite interesting,
since many particle physicist in my generation were told not to worry to much about these domain problems and aceept

them as a technical mathematical assumption void of any direct physical interpretation.

127The dynamics wonld then be carried by the representations of the local wodular groups instead of the global time-frame

dependent Hawiltonian.
B3 There are strong arguments that those chiral diffcomorphism groups arc of modular origin and belong to multi-interval
g aryg g s

algebras together with specially chosen (non-vacunm) states [19].
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aspects were understood in the setting of (free) QFT in CST, it was only natural to look for an explanation
of the surface proportionality of entropy in terms of quantum degrees of freedom at or near the horizon.
In contrast to the understanding of the Hawking-Unruh temperature as originating from the causal
localization behind a (Killing) horizon, the entropy problem was less susceptible to explicit calculation
involving (free) quantum matter in black hole background. But it is clear that if one could understand
the surface nature of the degree’s of freedom, then the entropy should follow suit. In the Lagrangian
formulation of QFT the elusive “light-cone physics” preempted some aspects of this idea, and is not
surprising that 't Hooft [21], who on various occasions used light-cone quantization, in more recent
times suggested to interpret Bekenstein classical observation on black hole entropy in terms of quantum
“holography”.

A problem like the present one, where field coordinates are not transformed into each other, but
rather degrees of freedom become transmuted in a way which is hard to describe in terms of pointlike
field concepts, is bound to cause trouble within the usual quantization formalism. To be sure, problems
with the use of one set of field coordinates versus another one already appeared before in QFT, although
in the early 60°°* they were sometimes the source of some prejudices about Lagrangian fields being in
some sense “better” than any other composites (carrying the same charges). This was part of a bigger
confusion about particles versus fields; the elementary versus bound state hierarchy of QM tacitly entered
QFT where it should have been replaced by the hierarchy of superselected generalized charges and their
fusion (including those nonabelian Casimir charges which underlies nonabelian internal symmetries).
For example in connection with the PCAC, physicists in Lagrangian field theory had to take notice of
the fact that one is not slavishly bound to those field coordinates in terms of which one has written
a particular Lagrangian. From the time in Illinois, as a collaborator of Rudolf Haag, I remember a
conversation between Murray Gell-Mann and Rudolf Haag which ended with some astonishment on the
side of Gell-Mann. Nowadays the understanding of the extreme insensitivity of onshell objects like the
S-matrix against changes of field coordinatizations has become a commonplace even in Lagrangian QFT,
especially after Weinberg tought physicists how to formally handle this problem in perturbation theory.
However the morphisms and isomorphisms needed in order to understand holography are of a different
caliber.

Mature physicists are of course aware that progress in physics is to a large part the liberation from
prejudices (including ones owns). Algebraic QFT theory had the big advantage that there was no place
for prejudices about fields, because there were no fields in its formulation. As a result, the problem with
this “feld coordinate free formulation” was shifted somewhere else. Namely it was not entirely clear that,
although one did not want to invent a new theory but just implement the same physical principles which
underlie the quantization approach in a different conceptually and mathematically more controllable way,
that one had not in fact actually lost the connection to the same particle physics. But it became soon

clear that the gains of understanding by working with nets of operator algebras instead of fields (as e.g.
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the manifest independence of the S-matrix from the choice of particular interpolating operators taken
from the local algebras) were not offset by an undesired vagueness or unintended invention of new physical
content. This was established beyond reasonable doubt. and in the case of chiral conformal QFT there
is even a rigorous proof for the equivalence of the Wightman description with the algebraic framework
[20]. As mentioned before algebraic QFT based on modular methods wants to stay laboratory physics,
and not like string theory aim at quantum gravity.

Already in the carly stages of the theory there were concepts. questions, and techniques which tran-
scended the Lagrangian framework and even that of Wightman. One could e.g. ask about the possibilities
of particle statistics compatible with the Einstein causality of observables. This goes certainly beyond the
Wightman theory which is a theory which includes the charge-carrying fields which ab inicio are assumed
to have + commutations relations for spacelike separation. The Spin-Statistics theorem just selects the
correct one of these two possibilities. In algebraic quantum field theory one succeeds to compute the field
statistics without such restrictive assumptions on nonobservable quantities (on which in d<1+3 one has
anyhow no a priori control). In the intermediate steps of the conceptually and mathematically rich DHR
and DR constructions [1], there appear parastatistics fields which belong to nonabelian Young tableaux
of the permutation group. They do not permit quasiclassical limits and Lagrangians, but are reason-
able objects in algebraic QFT (in the sense that the charge carrying parastatistics fields have enough
locality in order to admit a reasonable physical interpretation, albeit one which is much more noncom-
mutative. Only after enlarging the Hilbert space by the introduction of multiplicities (i.e. indices on
which symmetry-groups can act), does one make contact with quasiclassics. On the other hand, writing
down a Lagrangian has already preempted the answer hefore having been able to ask the question. An
ardent philosophical empiricist may point to the fact that there was never any practical need for asking
such a question since the usual formulation with built in multiplicities and Bose/Fermi statistics works
nicely. But he would have a hard time in say d=1+2 theories with braid group statistics, where it can be
mathematically demonstrated that those plektonic objects will never fit into a Lagrangian quantization
approach with field multiplicities.

Of course such an empirical fundamentalist may then retort that d=142 models is not particle physics.
In that case one could, assuming that he does not also declare the present AdS discussion in connection
with holography for irrelevant in particle physics, point out to him that although there is no satistactory
solution of the paradoxical situation of holography in any quantization approach!'®, the solution which
was given in algebraic QFT by Rehren [10] is conceptually clear and mathematically rigorous. The main
point in Rehren’s presentation is that the adapted Bisognano-Wichmann theorem allows to understand an

isomorphism between AdS,,; and conformal Minkowski spacetime M,, which is not a pointwise geometric

HOnantization difficnltics have been mentioned in Wittew’s papers [22]. Actually AdS only exposes the general limitation
of quantization which always exists in auy interacting QFT, once one leaves the realm of perturbation and quasiclassical
approximatious.  The entrance into QFT from the noncommmntative side of modular theory ice. without the classical

parallelisin (called quantization) may be more difficnlt and unusnal. but does certainly not sutfer from those limitations.



CBPF-NF-032/99 11

mapping (diffeomorphism) but rather a set mapping between modular localization regions of algebras.
In fact the notion of “weak locality”[4] used in his paper is completely equivalent to the spatial part
(the thermal subspaces of the total Hilbert space which are closed in the modular graph norm) in my
constructive approach built on modular wedge localization [3]. If the reader finds the small amount of
modular concepts inaccessible because he lacks mathematical understanding of LQP concepts, he may
have another chance by looking at. the closely related paper of Buchholz, Florig and Summers {11]. These
authors explain the LQP in an AdS space-time together with a rigorous physical account of what is
necessary to know about modular theory without assuming (in principle) a prior knowledge. We will not
try to reproduce these results here, since the clarity of the papers makes this a sacrilege.

As far as I could see, the only open problem in the BFS work is the question whether there can be any
genuine interaction at all in such a AdS world with that causality paradox mentioned in their paper. This
question is reminiscent of a problem which I encountered in my collaboration with Swieca at the beginning
of the 70 At that time there existed the challenge to understand the (global) “causality paradox of
conformal QFT” [25], i.e. the apparent contradiction between being able to conformally transform oneself
globally from space-like separations via the light-like infinity into the time-like region and the fact that
certain interacting “would-be” conformal models, as e.g. the massless Thirring model, did not comply
with the Huygens principle calling for vanishing time-like (anti)commutators which was required in order
to avoid contradictions with that global transformation property. In fact the only known d=1+1 models
which did not generate this paradox were free fields with Fouriertransforms on the light cone, as conformal
currents or energy-momentum tensors. The resolution [26]{27] of this paradox turned out to consist in
realizing the important role of the conformal covering space in that those paradoxical looking fields as the
Thirring field were not (as everybody believed up to that time) globally irreducible, but rather had a rich
decomposition with respect to the center of the conformal covering group. The irreducible components
in this decomposition (there simply called “nonlocal components”) became known 10 years later as the
conformal blocks in the famous Belavin-Polyakov-Zamolodchikov paper as everybody knows. One reason
why we only looked at the Thirring-like exponential boson fields was (besides the fact that they already
were available), that these new irreducible component objects were outside the range of euclideanization
and even outside the Wightman framework'® since their algebra admits local annihilators. My impression
after having read [11]is that the AdS situation has analogous causality problems. In fact, using the Rehren
isomorphism for AdS(1,1), one would expect to be able to lift the solution of the old conformal paradox
directly into the new AdS(1,1) realm. ‘

I now would like to explain some of the modular ideas which I used recently in a constructive program
for interacting LQP models which is based on the use of algebras and is completely free of field coordinates
(although I will think of the reader, and use a field notation whereever possible). Of course one must first

test these ideas in the interaction free case. This I did by showing that the Wigner representation theory

1 Wightman ficlds do not come with source and range projectors as those nonlocal components, for an explicit illustration

see [28].
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can be directly used for the construction of the local nets without e.g. using Weinberg’s formalism of
first constructing free fields which then would generate these local algebras. In this way one obtains an
intrinsic description of noninteracting theories which restores (or rather maintains) the uniqueness'® of
the (m.s) Wigner representations and avoids the plethora of covariant associated field coordinatizations
[12][13][14].

This first step may be viewed as analogous to the intrinsic coordinate-free description of geometry.
It uses a kind of inverse of the Bisognano-Wichmann theorem, i.e. the known modular theory for the
wedge, in order to obtain the operator algebra localized in the wedge. It may be viewed as a refinement
of Weinberg’s exposition of the Wigner theory mentioned in the first section, by implementing the idea
of modular localized subspaces directly in the Wigner momentum space description without the use of
covariant x-space wave functions or the noncovariant Newton-Wigner localization. This baby-version of
modular theory can be understood without knowing anything about the Tomita modular theory and as
such furnishes an excellent pedagogical example of the power of modular localization and the Bisognano-
Wichmann theorem.

The next step namely to construct interacting nets in this intrinsic manner is more difficult. Of course
one could follow Weinberg for the construction of free fields from Wigner particles, select some free fields
corresponding to (m.s), couple them to a scalar Wick-ordered interaction density W{x) (which one may
call £;q¢, but the existence of an L is not necessary, see previous footnote) which is then plugged into the
causal perturbative machine whose heartpiece is the perturbative transition operator S(g). From there
one obtains the retarded representations of interacting fields in terms of free field in Fock space which in
turn (or by direct use of the S(g)) generate the localized algebras after suitable test function smearing.
But this way of constructing local algebras would amount to just an exercise in semantics and go against
the spirit of LQP.

Let me explain the gist of the correct idea with the help of a two-dimensional representation and using
standard field theoretical language wherever it is possible.

Let A(z) be a d=1+1 massive free scalar fields with the following notation.

Alz) = e™PTq +hu)— (1)

7 e
e

— —wnpsh(x—O) _ L
= \/’F a(6)ds, C=Ru{—ir +R}

where in the second line we have introduced the x- and momentum- space rapidities and specialized to

(emmPsh(x=9)q(6) + h.a.)d, 2* <0

the case of spacelike x, and in the third line we used the analytic properties of the exponential factors in

Lo The unigueness on the field level was lost heeanse there are infinitely many u- and v- interwiners from the unigue Wigner
representation to the plethora of covariant L-representations. Weinberg prefers the one (those) for which there is a free
Lagrangians, since he wants to nse fields for a enclidean functional integral representation. Real time causal perturbation

theorv oun the other hand can be done in any field coordinatization. The best way would be do use none at all.
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order to arrive at a compact and (as it will turn out) useful contour representation. Note that the analytic
continuation refers to the c-number function, whereas the formula a(6 — iw) = a*(#) is a definition and
has nothing to do with analytic continuations of operators'”.

With this notational matter out of the way, we now write down our Ansatz for nonlocal but (as it

turns out) still wedge localized fields using the same notation

z) = _}_ .e—-iwnpsh,(/\/—()) —

F() \/57?/c Z(6)dd. Z(6) =0 2)
Z(01)Z(02) = Szz(01—02)2(602)Z(6y) (3)
Z0)Z*(8) = (01— 02)1 + Sypm (61 — 02) 2 (82)2(61)

For the moment the S s are simply Lorentz-covariant (only rapidity differences appear) functions which
for algebraic consistency fulfil unitarity S(#) = S(—#). We assumne (for simplicity) that the state space
contains only one type of particle.

Before continuing with the special situation we introduce a useful general definitions.

Definition 1 A field operator F(z) is called “one-particle polarization free” if F(z)Q and F* (z)) have

only one-particle components (for any one of the irreducible particle spaces in the theory)

For polarization free F(z)'s the vector F#(z)) is on mass-shell i.e. has a Fourier transform in terms
of Z*(0)Q2, with Z(6)Q2 = 0. Note that the definition does not yet require that F(z) itself to be on-shell.
We are however interested in F'(2)’'s which upon smearing with test functions restricted to a subspace £

generate algebras
A = alg {F(f) = /F(a:)f(m)dd':y | fe L} (4)

which on the one hand are big enough in order to create a dense set of states if applied to €2, but on
the other hand allow for an equally big commutant algebra A’, in short the PF’s should generate an
A which is cyclic and separating with respect to the vacuum. As a result of F(f)A'Q = A'F(f)Q for
A" € A', the on-shell aspect of the vectors is transferred to the operators, i.e. formula (2) for F(z) is
valid. The £’s we have in mind are subspaces of localized test functions £ = {f | supp fc (9}. But as a
consequence of an old theorem by Jost and the present author [4], this immediately limits the admissable
localization properties. If the field is pointlike local, this theorem forces the F to be a free field, and
by a slight massaging of the proof this would continue to hold for F’s which have a compact Minkowski
space localization. Even for noncompact localizations which are properly contained in a wedge (i.e. a

Lorentz transformed of the standard wedge x; > |xg|) this clash with interactions continues!® and the

L7 Operators in QFT never possess analytic properties in x- or p-space. The notation and terminology in conformal field
theory is a bit confusing, because althongh it is nsed for operators it really shonld refer to vector states and expectation
values in certain representations of the abstract operators. The use of modular methods require more conceptual conciseness

thau standard methods.,
I¥T owe this general model independent insight to D. Buchholy, private remark, unpublished.
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only consistent value of the S-functions in the above Ansatz are S = +1 i.e. free Bosons/Fermions. The
smallest region for which these arguments break down are full wedges. The following theorem shows that
indeed wedge localization in d=1+1 is consistent with nontrivial interactions and the result emerging
from the above Ansatz in formula (3) is quite surprising.

One finds that the coefficients are related to each other and fulfil the complete Zamolodchikov-Faddeev
algebra if and only if the F/( f s with supp f € W generate wedge localized algebra, thus unraveling the
physical significance of this formally introduced algebraic structure in terms of wedge localization [12]{13].

This is not the first time in physics that wedges play a prominent role. In Unruh’s Minkowski space
illustration of the origin of thermal aspects of quantum matter encapsulated behind a horizon, in the first
application of Tomita’s modular theory by Bisognano and Wichmann and now in the inverse use of the
Bisognano-Wichmann theorem for the direct construction of local algebras, in all cases one encounters

the fundamental role of wedge localization and wedge algebras. In the present case we find [3] [13][14]

Proposition 2 The requirement of wedge localization of a PF operator F(fy=] F(IIJ)]E(CI?)C[?IC, suppf €
W with F fulfilling formula 3 is equivalent to the Zamolodchikov-Faddeev structure of the Z-algebra.
In particular the thermal (Hawking-Unruh) KMS condition on their Wightman correlation functions
correspond to the crossing symmetry of the S-coefficient functions. The corresponding F’s cannot be
localized in 5malie7‘ regions i.e. the localization of F( f) with suppf'e O c W is not in O but still uses all

of W.

The reader can find the proof which amounts to a simple computation in [13][14]. Of course the
F’s are not ordinary (Lagrangian or Wightman-) fields, since there localization does not follow the de-
creasing support properties of f’s inside the wedge and therefore F(f) is the better notation than F(x).
Since polarization free generators F' will only play a role as wedge generators, we will simply use the
abbreviation PFG standing for “polarization-free-wedge-generators”.

A moments thinking about the special situation reveals that the modular structure, i.e. the existence
of the antilinear unbounded Tomita involution Sz (the subscript serves to distinguish this time-honored
modular notation from the equally time-honored notation for the scattering operator) is the general cause

underlying the above observation. In fact the modular “basic law” tor the physical wedge algebra is:
SrAQ = A*Q, Ae A(W) (5)

which defines the antilinear, unbounded, closable, involutive (on its domain) Tomita operator So. Its

polar decomposition
Sr=JA* (6)

defines a positive unbounded A% and an antiunitary involutive .J and the nontrivial part of Tomita’s
theorem (with improvements by Takesaki) is that the unitaty A implements an automorphism of the

algebraie. o¢(A) = A® AA~" = A and the J maps into antiunitarily into its commutant j(A) = JAJ =
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A’. For the case at hand (the Bisognano-Wichmann situation) these operators have their following physical

aliases:

AT = U(A(—278)) = Usn(A(—271)) )
J = SJ1n

where U;,(-) is the unitary representation of the Poincaré-group in the incoming Fock space and J(Ji)
is the TCP operator (its free field incoming version). The last relation shows clearly that the S-matrix is
a relative modular invariant of the wedge algebra.

The wedge situation is a special illustration for the Tomita theory covered by the Bisognano-Wichmann
theorem [1]. In that case both operators have well known physical aliases; the modular group is the one-
parametric wedge affiliated Lorentz boost group A* = U(A(—2nt), and the J in d = 14+ 1 LQP’s is the
fundamental TCP-operator as derived from first principles by R. Jost [1]; in higher dimensions it is only
different from TCP by a m-rotation around the spatial wedge axis. The formula for the modular operator
in terms of the scattering matrix (which contains the information about the interaction) is not part of
that theorem and as such is new. However it turns out to be just a modular adapted transcription of the
TCP transformation law of the textbooks [4]. The prerequisite for the general Tomita situation is that the
vector in the pair {algebra, reference vector} is cyclic and separating i.e. there is no annihilation operators
in the von Neumann algebra or equivalently: its commutant is cyclic relative to the reference vector. In
LQP these properties are guarantied for localization regions O with nontrivial causal complement O’
thanks to the Reeh-Schlieder theorem. In terms of the correlation functions of the generators, the wedge
localization affiliation of the generated algebra is nothing but the KMS condition (which is checked in
the above mentioned proof [19]).

The construction of the local QFT behind the S-matrix of the above model is of course not finished
with that of its wedge algebra. The essential next step is the construction of its double cone algebras!'?
via the demonstration of the nontriviality (# C - 1) of the intersection of the right wedge algebra with
its translated opposite left wedge. It is precisely here where the idea of holography enters the game. It
is much easier to show the nontriviality of the holographic image of this situation.

The crucial idea is to look at the relative commutant for light-like translations for say a4 = (1,1)
AWLY NAW) (8)

where A(W,) is the a,-shifted wedge algebra. A(W,) C A(W) is almost a modular inclusion, i.e. the
modular group of A(W) i.e. the Lorentz-boost in one direction acts on A(W_,) as a compression into

itself. The only missing property is the standardness of the relative commutant in H with respect to €2.

19 The sharpening of localization via algebraic intersections is the essential difference fo usual QFT even including Wight-
man’s approach. I was quite surprized when in this way I obtained the same recursion formula [12] which in Smirnov’s

“axiomatic” approach [24] (not the nsual QFT axioms but rather some calenlational recipes designed for factorizing models).
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But this is easily achieved by projection onto the cyclicity space M)

Hy=P.HCH=AW)Q (9)

Using a theorem of Takesaki, the reduced inclusion defines again a modular inclusion in its own right
from which one may reconstruct a positive energy translation U(«) which then can be used to define a

reduced net indexed by intervals

Al emiha) = U(@)ATTE, (AW,

ay

Y NAW)) AYT Y4, a) (10)
M+ = U;,A(IQ@.ML), E+ (.A(I/"f)) = ./M+ = P+A(M/)P+

The reduced net can be shown to be “standard” and the set of standard modular inclusion is known to
be isomorphic to the set of all chiral conformal field theories (S-W). Therefore each d=1+1 net comes
assoclated with a “satellite” chiral conformal net. This is the rigorous modular version of holography
and again, as in the AdS case treated by Rehren, this association is outside the range of Lagrangian
quantization since there is no Lagrangian or euclidean tfunctional integral process which can describe
properly this transmutation of degrees of freedom. At the time of writing of this essay, the computations
for the existence proof of the factorizing models (~double cone algebra nontriviality) have not been
finished.

The use of the holography idea for higher dimensional QFT’s is more involved. If one carries out the
previous modular inclusion construction, one realizes that, hecause of the transversal indeterminacy of
the chiral conformal theory attached by modular inclusion (which is localization-wise really attached to
a whole light front rather than a light ray), the chiral theory is, contrary to Rehren’s AdS treatment, not
yet sufficient for a reconstruction of the original theory from the holographic image. It turns out that
by tilting the Lorentz-boost of the original wedge around one of its light rays one generates a "stalk” of
conformal theories which, more analogous to a scanning process than holography, allows the reconstruction
[16] (called “blow-up” in the paper) of the full net theory. It uses an enrichment of modular inclusion,
called modular intersections, which in its geometrical interpretation corresponds to the interaction of
two different wedges which have one light ray in common. Modular inclusions and modular intersections
constitute presently the most powertul conceptual/mathematical instruments which LQP has to offer.

It should be clear to those who know a bit about the two-dimensional bootstrap-formfactor construc-
tive program, that the two-dimensional modular method for factorizing models (i.e. those which are
defined by a matrix-generalization of the Ansatz at the beginning of this section) is what lies behind the
formfactor program initiated by Karowski-Weisz and Smirnov [23]{24]. It does however more than only
justify those very successful collection of non-Lagrangian cooking recipes, in that it promises to solve the
difficult and not fully understood problem of the correlation functions of pointlike quantum fields {using
again standard QFT concepts) in those models. In fact this difficulty, known to every expert of the
bootstrap-formfactor program in the conventional setting results from the fact that there is no natural

basis in interacting field space as the Wick composites for free fields. Therefore it is better to avoid fields
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altogether and characterize the physical content of a theory in terms of its basis independent double cone
algebras. In their nontriviality demonstration as well as in their actual construction, the holography, as
we have argued, plays an essential role.

Since Chew’s S-matrix bootstrap program (i.e. the formulation of the nonlinear S-matrix axioms as
well as the actual construction of interesting examples) only works for the d=1+41 factorizing models,
there is no hope to do higher dimensional QFT with modular methods in a two-step process of calculating
first S and then the associated wedge algebra. Rather one has to understand the structure of correlation
functions of the wedge generators F'(f) (which turn out to be uniquely fixed in terms of .S) and of § itself
simultaneous. This is presently only imaginable in a perturbative spirit. But note that this would be a
perturbative approach for wedge algebras and not for individual fields, i.e. technically speaking for the
whole space of formfactors generated from the PFG’s sandwiched between incoming particle ket vectors
and outgoing bra vectors without any natural way of distinguishing individual elements [14]. Refinements
and distinctions have to go via improvements of localizations, which in modular theory can only happen
through algebraic intersections.

In order to return at the end of my essay to the Wichmann’s S-matrix research®” carried out at the
beginning of his research carrier at Berkeley, I would like to use some recent personal experience of my
own as a vehicle to recapture some flavor of those times.

Shortly after string theorist picked the big Latin letter “M” for one of their recent inventions, but before
the much clearer AdS proposal (note the small d there!) attracted the attention, I was struck by the wealth
of coincidences of some of the string theoretic statements, especially in connection with transmutations
and counting of degrees of freedom, light cone physics (in particular their Galilean group affiliated with the
light cone) and ideas on holography, with recent results about consequences of modular theory. Although
I admittedly do not understand string theory from a physical point of view, I do think (most of my
colleagues from algebraic QFT do not share such optimistic ideas) that the used differential-geometric
quantization formalism, together with the relics of physical locality and spectral properties which such a
generalized standard formalism inexorably contains and which are (even in in arguing along differential
geometric instead of local quantum physical lines) hard to loose, constitutes a powerful mathematical
machinery for the discovery of new structures; even though physical interpretations which could reconcile
string theory with the physically (but not mathematically!) more conservative local quantum physics are
hard to see, and even when faintly visible, probably not always correct. Apparently the string formalism
uses (to me hidden) ideas which carries string physicists beyond the confines of possibilities allowed by
Lagrangian quantization, and in this way achieves similar “‘miracles” as modular theory (which originated
by faithfulness to all the principles underlying standard QFT, but not its formalism).

But my proposal to include “modular” (in the sense of d=14+3 LQP without “curling up” unwanted

207 (to not know whether Wichmann, while working on wedge localization and modular theory, was aware about these
strong councetions with his previous S-matrix rescarch. It may have been another instance of the role the subconcious on

scientific research.
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dimensions by semiclassical Klein-Kaluza ideas) also in the list of possible interpretations of the letter “M”
did not find the approval of the referee who claimed that all this is accidental and spurious (whereupon
I withdrew my admittedly rather speculative notes from the hep-th server).

Fortunately the arrival of the clearer AdS structures has made it possible to have at least some
realistic comparisons[11][10] if not directly of string theory, then at least of some of what are believed to
be consequences of its underlying philosophy.

My attitude towards the issue string/modular theory?! did not change, in part due to the fact that
I have much deeper, almost archaic reasons, which probably also the Jubilar from his early Berkeley
S-matrix days can share with me. I am referring to the nysterious role of crossing symmetry which at
the same time was (apart from unitarity) by far the physically most important input into the Berkeley
(primarily Chew’s) S-matrix bootstrap program; the analyticity, to the extend that it was not needed in
the formulation of crossing, was more of a technical nature. Now, with all the hindsight of the distance
in time and significant advances about the consequences of the Jubilar’s modular contributions, it is
becoming gradually clear that those two topics belong together, and that there could not have been
conceptual progress on crossing symmetry without a comprehensive modular understanding of the wedge
situation.

Let us follow the flow of history on crossing symmetry a bit more.

In order to lift some of its mystery, as everybody of that generation remembers, Veneziano invented
the dual model and Virasoro observed subsequently that the (onshell) S-matrix (still without its unitarity
corrections) permitted the mathematical trick of a representation in terms of a lower dimensional (offshell)
QFT. This was the birth of string theory, never mind its several revolutions and semantic changes which
happened in the course of its conversion of an original nonperturbative proposal for a strong interacting
S-matrix?? into a TOE including quantum gravity.

Unfortunately the full understanding of the notoriously difficult crossing symmetry (which most people
thought of as an onshell imprint of the offshell Einstein causality), and whose unraveling was worth

any effort, was not obtained. Regrettably the birth of string theory was for many especially young

21T gtill helieve that both string theory and LQP leave the rather uarrow confines of standard Lagrangian QFT, but for
differcnt reasons and with different ahns. Whereas for the followers of striug theory, QFT was identified with the standard
text book Lagrangian or functional guantization, and therefore the (revolutionary) departure happened on the physical
side by keeping as much as possible of the standard formalism, LQP is totally conservative with respect to the underlying
physical principles, but revolutionary on their mathematical and conceptual implementations. String theory, after its sccond
revolution, wanted to be (or at least to incorporate) quantum gravity, whercas LQP definitely wants to stay with laboratory
phiysics. A very instructive illustration of this difference is supplicd by comparing Wittenw’s approach {22] to AdS versus

that m [10] [11].
R . . . . . - . . . . . . n . .
=2 An S-matrix with an infinite tower of particles in a finite range of mass is of course not compatible with a reasonable

phase space behavior of quantum physics (Hagedorn temperature and worse), bhut as in Fevmuauw’s perturbation theory one
would expect that from genus g=2 on, the tower (except a finite nmber of particles) would transmute into sccond Ricmanu
sheet resonances, According to the best of my knowledge there is no known property of QFT which prohibits this. But in

this case, what means “stringyness” versus QT behavior?



CBPF-NF-032/9Y9 19

theoreticians, also the point of departure into the physical blue vonder with little chance to return.
Now with the patient and precise early work of the Jubilar on modular theory bearing many fruits,

and with the importance of crossing symmetry at the cradle of string theory on ones mind, the proposal

to occupy part of the physically underpopulated M-universe with m as in modular theory, may after all

not turn out to be as outrageous as it appears on first sight.
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manuscript and to my FU-Berlin Experimentalphysik Kollegye William Brewer, who recreated to me (over
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historical correctness of some of my remarks concerning the dawn of modular theory.
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