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ABSTRACT

The evolution of bubbles with arbitrary density in an infinite nuclear system is
studied in a simplified treatment. Kinetic pressure fluctuations on the bubble surface
are considered. The critical radius, evolution time and probability for bubble expansion
are shown to depend significantly on the initial bubble density.

Key-words: Nuclear multifragmentation, Statistical fluctuations, Relativistic heavy ion
collisions.
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In a recent paper, Bondorf et al.[l1] have addressed the problem of how random
forces affect the dynamical evolution of the bubbles appearing in an expanded hot
nuclear matter. This important question has to do with the nuclear multifragmentation
and basically involves the study of the mechanism by which an initially very excited
nuclear system grows and then breaks-up into many pieces.

The reaction mechanism of the nuclear multifragmentation is not well understood
yet. However, two main mechanisms are currently considered, namely, the spinodal de-
composition and the bubble nucleation[2]. In this last case, the scenario is the following:
bubbles (rarefaction regions) are formed in the superheated liquid and they grow and
nucleate(3], then provoking the disruption of the matter. It is just in this context that

the study of the effects of fluctuations on the dynamics of bubble growth in hot nuclear
matter is relevant.

Concerning to the bubble growth, it was shown earlier by Blin et al.[4] that, for
bubbles with radius R, immersed in a hot nuclear matter, the bubble critical radius is

Re=-3% 4))

provided the thermodynamical potential is given by

QR=4xR%0 +

4”;23 AP 2

where o is the surface tension and AP, the pressure difference between the liquid and
gas phases.

In this simple case, the physical meaning of the critical radius is clear: bubbles
with radius R < R, will collapse and bubbles with R > R, will expand, while bubbles
with R = R, will stay in stationary regime.

The essential result from Bondorf et al.’s calculation is to show that this simple
picture may be somewhat modified, if single-particle fluctuations are introduced. In
fact, by taking into account the random forces arising from the fluctuations in the
number of nucleons striking on the bubble surface per unit time, they have obtained a
quite different result: for subcritical, critical or overcritical radii, both expanding and
collapsing bubbles are found. This result is in striking contrast with the predictions

extracted from the bubble dynamics when kinetic pressure fluctuations are not taken
into account.
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However, in their work, they have assumed zero initial density bubbles, Of course,
this is a quite particular configuration and represents even an unrealistic approximation
if one has in mind that a liquid—gas phase transition may there be underlying in the
nuclear fragmentation process. Therefore, it is worthwhile to extend the study of the
single—particle fluctuation effects to the case of arbitrary bubble densities.

In this letter, we report the results obtained by generalizing straightforward the
equations of motion for bubbles with nonzero density. For simplicity, we assume isother-
mal processes, so that the bubble evolves in thermal equilibrium with the liquid back-
ground. We are confident that our results will not be changed qualitatively by this
simplified treatment. Let's, first, consider a spherical bubble of number density n; and
radius R, immersed in an infinite uncharged liquid of density n; at temperature T, with
the obvious restriction ny < n;.

Assuming no mass exchange between the bubble and the medium during the evo-
lution, the velocity field v(r) is obtained with the help of the equation of continuity,

r<R

v = E r
- RR? -~ R 3
where the dot denotes time derivative. Therefore, the Hamiltonian of the system is

H =2rm(n1 + %)Rskz +47R%0 + 413123 AP (4)

where m is the nucleon mass, and ¢ and AP stand for the surface tension and the
pressure difference, respectively, of the non—zero density bubble. Of course, Eq.(4)
recovers the Hamiltonian of zero~density bubble case when ny = 0.

In what follows, the single-particle fluctuations will be treated in the same way
than in Ref.1, i.e., the pressure difference is split into

AP = AP + §AP (5)

where AP = (AP); + (AP); is the average part and SAP = (§AP), + (6AP); is the
fluctuating part of the pressure difference, both written as a sum of contributions from
the bubble (subscript 5) and the liquid (subscript [).

The equation of motion for the bubble radius R is obtained from Eq.(4). Then, we
can split it into two first order differential equations. After integrating them in a time
interval At, which is chosen to be sufficiently small compared with the hydrodynamics
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timescale and sufficiently large compared with the timescale of two consecutive nucleon
striking on the bubble surface, we get

R(t + At) = R(t) + V(1) At (6)
and
At 3 5AP 100 |
Vi+ Aty =V(t) - B+ ) RO [EVz(t) (5ni —ny) + — + mE({)
)
~ mR(t) (5ng + ny) 1) (7) _
where

t+ AL
It) = / SAPt
t

1s the random impulse.

A simple estimate of I(f) has been made by Bondorf et al. in the approximation
of a classical independent particle gas. They have shown that the values of I(t) obey
a Gaussian distribution approximately, with average value equal zero and standard
deviation given by '

r am\/a’nv?,At

3=R ' )

where v, is the average nucleon speed and a = T/er, which is introduced in order to
take into account the fact that only nucleons in the surface of the Fermi sea contribute
to the fluctuations. For more details, see Ref.1.

In this work, we have adopted the equation of state used by Sneppen and Vinet[5],
which is derived from a Skyrme interaction. With relation to o, we have assumed that
it 1s temperature independent and given by

o =01~ 0p. (9)
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where oy(3) is the surface tension in the case a zero—density bubble is embebbed in a
medium of density ny). Furthermore, in an expanding nucleus, the surface energy is
assumed for simplicity to scale like its bulk energy.

Eqgs.(6) and (7) are solved iteratively, with At = 1fm/c. However, the results are
shown to be essentially the same provided At < 10fm/ec. Each run yields either a
collapsed bubble or an expanding bubble. In this last case, the criterion used is that
the bubble volume is greater than four times the critical volume. This is reasonable,
because beyond this volume, the expansion process is shown can no more be stopped
by random forces. In the case of collapsed bubble, the radius collapses to the final value
given by Ry = (nf/n;)'/3 R;, where the label i(f) denotes initial (final) value. In this
limit, the bubble and the liquid background form a whole homogeneous matter.

In what follows, we present the results of our calculation, by assuming T = 5 MeV
and n; = 0.075fm 3. Firstly, we display the critical radius R, as function of the initial
bubble density ni (Fig.1). It is seen that R, is strongly dependent upon n}, with a small
decreasing in the beginning and after that a rapid and monotonic increasing. At n} = 0,
we get R, =~ 1.86fm and at n} & 0.007fm=2, the critical radius reaches a minimum
with R, & 1.68fm, then almost doubling this value, when n} tends to n;. It should be
noted that, if the Coulomb energy is taken into account, the value of R, has been shown

-in Ref.4 to decrease significantly only for densities greater or of order of 0.1fm™3.

In Fig.2, the yields of expanding and collapsed bubbles are plotted as function
of the elapsed time t., for a particular value of the initial bubble density, namely,
ni = 0.05fm=3 (solid lines) and for two different values of the initial bubble radius,
R; = 1.5fm and 2.0fm. In this case, R, =~ 2.3fm and the statistics is 50,000 runs.
For the sake of comparison, the results from Ref.1, corresponding to the case of nj = 0,
are also presented (dashed lines). For R; = 1.5fm, the histograms show only small
dependence on ni , but for R; = 2.0fm, the differences are significant in two respects,
namely, the position and the high of the peak of the yield curves.

In Fig.3, the expansion probability P,:p is plotted as function of the initial bubble
density, also for R; = 1.5fm and 2.0fm. Of course, the collapsing probability may be
calculated simply as the complement of the expansion probability, when single particle
fluctuations are included. It should be noted that, if B; = 1.5fm, the initial bubble
radius is always less than R., for every nj, but if R; = 2.0fm, one finds a region in
which R; > R. (segment AB) and another region in which R; < R. (segment BC).
The point B is seen to be located at ni =~ 0.027fm™2 for which R; = R, = 2.0fm
(see Fig.1). In other words, for R; = 1.5fm, we have only subcritical bubbles, while for
R; = 2.0fm, we have overcritical bubbles in the lefti-hand region and subcritical bubbles
in the right-hand region. In the curve corresponding to R; = 1.5fm, it is seen that a
smooth decreasing in the beginning is followed by also a smooth increasing in the end, so
that the value of the expansion probability does not deviate significantly from the value
at n} = 0. The maximum of Pesp occurs at n} = 0.065fm ™3, when the probability is
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0.20, which has to be compared with the value 0.13 at rn} = 0. The behaviour of P, for
R; = 2.0fm is much more dramatic than in the previous case. As a matter of fact, P,sp
drops rapidly from around 0.65 at nj = 0 to 0.26 at n} &~ 0.07fm™2. It is clear from
this result that the approximation of n{ = 0 overestimates the value of the expansion
probability.

In Fig.4, the elapsed time corresponding to the peak of the yield curves is displayied
as function of the initial bubble density, both for expanding bubbles (full lines) and
collapsing bubbles (dashed lines). It is seen that, in the case of expanding bubbles,
there is a minimum at n} & 0.01fm™3, irrespectively of the value of R;, and for n{ >
0.03fm ™2, the elapsed time is almost independent of R;. The elapsed time of collapsed
bubbles is much more sensitive to R; in the whole range of densities considered.

In summary, we simply have made a generalization of the study of the fluctuations
effects on the bubble dynamics in the hot nuclear matter, for arbitrary initial bubble
density. The results of our calculation show that the approximation of zero initial bubble
density may be quite poor if expansion probability is concerned, especially for values of
the initial radius near R,, in which case it may overestimate P,;, by a factor greater
than 2. Furthermore, the nj = 0 approximation also overestimates the expanding
elapsed time in the range of low (with relation to n;) densities, and underestimates it
-in the range of high densities, while the collapsed time is overestimated almost in the
whole range of initial bubble densities, except in the region around n} = 0.01fm™3,
One should note that, as R, is expected to depend strongly on the equation of state of
nuclear matter, the above results may be significantly changed, if a different equation
of state is used. In particular, a more realistic expression for surface tension should be
used. Work on this point is presently in progress.

Acknowledgment:

‘We would like to thank R. Donangelo for many comments and continuous stimulus,
K. Sneppen for providing us his nuclear equation of state code, and E. Paiva for his help
in the early stage of this work.



CBPF-NF-032/91

FIGURE CAPTIONS

FIG.1:

The critical radius R, as function of the initial bubble density ni.
FI1G.2:

The yield of expanding and collapsed bubbles as function of the elapsed time, for
n} = 0.05fm™3 (full line) and nj = 0 (dashed line). The upper (lower) part cor-
responds to R; = 1.5(2.0)fm, while the left (right) part corresponds to expanding
(collapsed) bubbles.

FIG.3:

The expansion probability P.., as function of the initial bubble density nf, for
R; = 1.5fm and 2.0fm. The point B corresponds to critical bubbles. For more
details, see the text.

FIG.4:

The elapsed time t, as function of the initial bubble density n},for expanding bub-
bles (full lines) and collapsed bubbles (dashed lines), both for R; = 1.5fm and
2.0fm.
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