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ABSTRACT

We present a ocomprehensive account o©f the development of the un
derstanding of the quantum chiral baryon proposed recently. It is
a stable chiral soliton with baryon number one obtained after first
guantization through collective coordinates. Starting from the
exact series solution to the non-linear sigma model with the hedge-.
hog configuration, we calculated the values of several physical quan
tities (mass, axial weak coupling, gyromagnetic ratios and radii}
as a function of the order of Padé approximants used as approxima—f
te representations of the solution. It turns out that -consistent
results may be obtained, but a better appfoximation should be de-

veloped.

Key-words: Chiral soliton; Non-linear sigma model; Baryonic prop-
erties; Skyrme model. '
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1 INTRODUCTION

The correct representation for the nucleon states is a long
'standing problem in elementary particle physics. By this we .mean
an understanding of the physical properties of the nucleon starting
from adequate first principles; like the exiétence of quarks and
the flavour symmetry as displayed through current algebra.

An important step forward seems the recall of the pioneering work

by Skyrme(-” done by Pak and Tze(z)

(3)

, Balachandran and the group at

(4)

Syracuse University and Witten It was soon recognized. the

soundness of this approach and it received a lot of attention after

wards. Applied to the description of the.nucleon(s)

(6)

and to pion

nucleon scattering it was relatively successful.

In short, the Skyrme approach in its modern version consists on
the "hedgehog" configuration as input for the non-linear sigma mo-
del lagrangean to which is added a special appropriate stabilizing
term including and "ad hoc” dimensionless parameter. This classi-
cal stable solution, up to now mainly treated approximately or nu-
merically, is used in applications after introducing quantization
through collectivé coordinates. Results. for physical quantities are
then expressed in terms of the two parameters of the theory, the
pion decay constant and the Skyrme parameter whose values are ob-
tained using as inputs the masses of the nucleon and A(1232) re—

(5)

sonance -

We discovered_recently(7)

an important feature of the hedgehog
radial equation in the classical non-linear sigma model: the exact
solution is dependent on a completely undetermined parameter, with

dimension of mass. This is peculiar of ordinary differential e-
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quations when the Lipshitz condition for uniqueness of the solution
is not fulfillea‘®’.  rhis point has not been given enough weight in
the previous literature, and even in some recent one. More  impor-
tant, this characteristic persists when the Skyrme term is'addedtgh
since it is as singular at the origin as the sigma model term. It
is not apparent to us by now how this feature was included in most of
previous numerical work. In the works by Balachandran et alfaz an

equivalent "profile" or "shape" parameter was introduced in the ansatz

proposed for the solution of the Skyrme lagrangean.

Two important comsequences follow. from this nonuniqueness of
the exact classical hedgehog solution. First, the instability prob
lem of the classical soliton mass can be completely phrased in terms
of the parameter. Second, as we discovered later onTlO}(and contem
porarily, was proposed from approximate sclutions by Jain, Schechter

and Sorkin(ll)

of Syracuse University), the gquantum hamiltonian ob-
tained from the rotating soliton resulting from the introduction of
collective coordinates presents a stable minimum. We find appropri-
ate to christen this solution as the chiral quantum baryon. As shown
in our previous work, encouraging results for the mass and the weak
axial coupling constant g, are obtained .as we approximated the ex-

act solution for the hedgehog by means of appropriate Padé approxi-

.mants.

In the present work we elaborate on details oftthe proposal and
numerical treatment of the chiral quantum baryon (from now on, ab-
breviated as xQBf and present results for its physical parameters;
like mass, gy the isoscalar and isovector gyromagnetic factors and
the corresponding radii using higher Padé qgﬁoxﬁmmts. These . re-
sults are given as functions of the order of Padé approximants that

we take as good approximate representations of the exact chiral so-
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" liton. By_the way, we analyze and exhibit some problems on the

consistency of the current treatment of the problem.

In section 2 we expand considerations.on'the treatment of the.
problem at the classiéal level; with special emphasis on the'proR
erties of the solution. We consider the guantum hamiltonian and the
solution at the minimum in section 3. We show that the quantum
stable solution, xQB, is different gualitatively from ' the usual
Skyrme classically stabilized solution, and comment on the guan-

tum minimum for the theory including a Skyrme term,

In section 4 we introduce the approximation by suitable Padé
approximants of the solution, and discuss several features which

turn to be important in.the following.

Section 5 presents the applicatidn.of the former results to
the evaluation of physical properties. We are led to relations
which , while being consistent in the.calcu;ation-with the non 1i
near sigma model lagrangean, seem not.toﬁbe fulfilled_by the cor-

rect {physical) solution describing a baryon.

Section 6 is devoted to a discussion of all the subjects con-
sidered previously, amitb mxmestgmthams for further research. We
emphasize the difficulty in representing the short and long dis-
tance regimes for the exact solution, and how this translates in-

to our approximate solutions.

We detail in appendix A a calculation of the second function-
al derivative for the lagrangean of the full model with a Skyrme:
term., 1In any case, it is of indefinite sign in the pure sigma

model and with the Skyrme term.
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2 THE EXACT SOLUTION FOR THE HEDGEHOG IN SU(2) NON-LINEAR SIGMA
MODEL AT THE CLASSICAL LEVEL

The starting point will be the non-linear sigma model classi-

cal lagrangean:

1% 1 2 (43 I P : -

where U is a unitary operator’

UU* = U+U =1
and
9
3, = —
k- axk

In the context of applications of (1) to hadronic physics as an
effective lagrangean, fTT is the pion decay constant. We shall a
dopt this view to begin with, pointing also to its need for (1)

to have the reguired dimension.

We shall be concerned with .a candidate solution for (1), the

SU(2) hedgehog configuration

U=U, = exp (i 7.h Flr)) {2)
where:
Ty {k=1,2,3) are the Pauli matrices; (2a)
3 2
rz =3 (x5 (2b)
k=1
no= ;/|r| {2¢c)
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Substituting (2) in (1) and wminimizing to obtain the classical Eu-

ler-Lagrange equation, we get:'

d*F(r)

+ 2 = sin2F(r) NER
ar? dr.
To eliminate the first derivative, we put.
Fir) = X&) (4)
and changing the independent variable
x=3 (5)
we arrive finally at
a’x(x) - 2 5in (M) (6)
X X

dx?

In order to solve (6), we try an expansion in power series:

x(x) = x(0).+x'(0Ix 4.-21—!_x" (0)x24% X' (0) x4 ..

2 x® et v (7)
Comparing both sides of (6}, we need then:

X(O) =0 ’ (8a)

x'(0) =0, 2ndn ’ (noe z) (8b)

and find:
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x'' (0) : undetermined (8¢c)

D o, nez (8d)
Notice that x''(0) has dimension of mass (or(length)'l).

The even derivatives are all expressed in terms of powers of

the undetermined second. derivative. We obtain:

XIV(O)-'= - 1% X' (0)°® (9a)
2

xWI0) = —2— x'"(0)5 (9b)

- 2% %7

Yoy o 27 w7 (9¢)
2°x%x3x5

xX(0) = %‘-3;"—% X" (0)? - (9d)
X b4

and so-on. We may rearrange terms, and finally find that we can

write:
X(x) = 2n T+ 3 X' (0) %% X({X" (0)x)?) (10)

with:
X((x""{0)x)?) = X(s?) =n:§0 £ 2o | {11)

The coefficients fn are given by:

£ =1 - (12a)
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2 ~ B9&0 |
T I Y (1éd)
3 =~ 5676 800
73
£, = 37433 024 000 (12e)
£ = - 3337 (12£)

6 199 345 152 000

In terms of the chiral angle, we have:

F(r=0) = ngm {13a)
F' (r=0) = % "' (r=0) (13b)
1 l 11
F'{x=0) = 7 x' (x=0) (13¢c)
and:
F(s) = n,7+35 X(s) , nex (14)

This is a most important result. The chiral angle appears natural
ly as a function of a dimensionless variable. The consequences of

this fact constitute the main content of this article.

Some comments on these expressions. The series for X{s) is of
alternating signs, and with coefficients having a ratic of a hundred
approximately. If some structure results from it we must expect that s~ 10, -
which in turn means x'"{(0) of the order of 10GeV. Also to make the
differential equﬁtion regular, the value at the origin must be a
multiple of 7 (see Egs. (8a)J8b)). This we shali relate soon

to the value of the baryon number.
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Notice that what we have is a set of EXACT SOLUTIONS to the

chiral non-linear sigma model lagrangean not known until we dis-

covered them(7). Many of the features of these solutions survive
the addition of a Skyrme term(g):

_ A
32e?

SK~

‘Iasx Tr[U+(3kU),Uf(BLUT]2 {15)

In particular the undeterminacy of the seéond derivative at the
origin persists, since this term is not more singular than the
original non—-linear sigma model term. This makes us inquire a-
bout the nature of the numerical solution found in the 1iterature(5'6),

since apparently they do not take care of the undeterminacy.

The next step concerns the behaviour at infinity. PFirst, we

change the independent variable in Egq. (6) such as:

y = 1/x ='§ {16)
and the dependent variable into:
_Kily) _r 2, _
x(x) = =L = 5 K = TF(x) (a7
The differential equation is now:
2 _ -
aKy) .2 gynxiy) (18)
dyz YZ )
Again, we try a solution by power series:
K(y) = K(0) + K* (0)y + 57 K" (D) y?+ oot o K04 ...

(19)
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and find:

K(y) = 2n,T+ 37 K" (0)y?+ (=13 K" (0) %y +

L . )
L BEL) k(0% 4 ., nc ~ 120)

+

Again, the consistency of Eq. (18) imposes the value for K(0) to
be an integer multiple of 7. Notice that a new undetermined para-
meter, K''(0), with dimension (length)?, appears. This is consis-
tent with Eq. (8c), or, in other terms, it is to be expected to ex
press K'' (0) in terms of xf'(O)'z. . That is, a unique solution fér
any value of x''(0) (or K''(0}) should be allowed. At the classical

level, however, there is no vreferred value for the undetermined parameter.

The addition of the Skyrme term is accamplished in a very different spirit.

It is thought as a device to provide a stable suitable minimum.at the classical
level introducing a dimensionless parameter. However in the work by Balachan-
dran et al. (3) the need for the introduction of an additional "shape" or "pro-
file" dimensional parameter was acknowledged.” It opened the road to the

subsequent development by Jain, Schechter and Sorkin(u). The point,
however, is. that the introduction of this (dimensional) parameter
in the hedgehog stems from the original non-linear sigma model la-

(7,10)

gragean, as we showed in our previous work Is the prize to

be paid for the Euler-Lagrange equation. of the model to be consistent.

We anticipate here and shall show below that this property per-
gists in the full Skyrme lagrangean, though hindered by the .intro;
duction of the Skyrme parameter. This gives a new meaning to the

numerical fit of the asymptotic behaviour of the solution to  pro-
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vide the value of the weak axial coupling as done by Adkins, Nappi

and.Witten(s)(from.now.on,.referred as ANW).

It can be inferred from Egs. (17) that K(y) (or F(rj_) may be written

in terms of another appropriate dimensionless variable,

K{a) = 2n_7 ;-% oy{s¢} , ncZ (21)
g = K" (0) YZ = K" (0) xu (0) 2g—2 . (22)
and we have:
o 2n
¥(o) = § wmo (23)
n=0 -

The fitst coefficients are

1 24%3x7 336
T] = - 1 = 1 -
2 27x5x7x1l 49280
ng = - 1 =- L
3 28%32¢5x7%x11 6 209 280

To describe baryoh states a connecticn is needed between the num-
bers n_ in (10) and n_ in (20). This results from the value of the
topological current whose associated charge is usually related to’

the baryon number. That is:

1 S R, 29 + _
I, = ;z;; eyvpl Tr[U' (3 ,U)U (apU)U (3AU’3 (24)
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The conserved charge is:

B = IJ, d%x. = E -I;rrr;.a dF° sin’p
L ) Y 2
o dr r

h

L r(=)-F0)] (25)

We see that the baryon number one corresponds to:

It is usual to put n,=-1, ny=0. With these conditions, we need

to have, as a result, from Egs. (14) and (21)

X(s) §_+u> 4n/s (26a)
and
Y (&) m> =-4An /0O "{26Db)

We are now able to express the stability condition of the soliton
golution to the non-linear sigma model in the hedgehog approximation
at the classical level in terms of X" (0) or K" (0). The mass of

the soliton is given by:

o i 1y 2. 'y : 3
My = an g2 [ar -[rﬂ(ﬂl‘f—’-) : Zs;inzF(r')]-" (27)
o dr' _ .

Using now the expressions (14) or (21) for the chiral angle, F(r):

F{r) = F(s) =n,m+ 3 X(s) , n €%, s=3x"(00  (28)
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=F(o) = n,T+FO¥(6) , nCZ , o=K"(0)x"(0)%™2 (28)
we substitute in (27) and have:
M = 2m £2 —L—st'[1s'2(its'x(s')_1)2;asinzts' X(s'))] (29a)
o T "0 o 3 PP xS |

87 f2 K“(-o)lflzz FG![G;L/_a[L(mY‘w-”] + 1l sinz (1 OQ-Y(.O-I),} .
T . Jo : ao" 20" 3; 2 q I 3

{29b)

The problem of the stability of the classical solitoﬁ solution is
translated in terms of the dimensional parameters x" (0) or K" ({0),
which are completely undetermined because of the singularities of
the differential equations.{Eqs. (6) and (18))). As remarked to us
by R. Méndez and J.E. Stephany Ruiz, one can interpret the instabi
lity of the classical hédgehog.soliton as a consequence of the fact
that the sc¢lutions. for the chiral angle, as evidenced by Eqs. (14)
(9)

and (21) are scale invariant . It is this crucial property pre-

cisely that is important for the stability at the quantum level.

Let us now analyze the addition of the Skyrme term. If the
number e is assigned the value e=l, we see that, since F ié a di-
mensionless variable, it may depend on r only. through a conbination
kr, where k has dimension.(length)'l. If this is so, we have that

the Skyrme term is of the form:

k x a number

Let. us look more carefully. The expression for the Skyrme model lagran

gean; with'a'hedgehog for the unitary field, is:
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' 2
L = - 47 f,;‘; Idr‘\ 2 (& ) + 28in?F + sin?r (SE,)° ,
o ar’ _ e-?f; _ dr'
4  sin‘F (30)
22 a2
e fﬁ_ ;'
The Euler Lagrange equation is:
: F2m Aw - ) 2
(%—rz-a- 2 sin"’F):E—E-d-%r dF+ 1 sinzF(%E) - % sin2F
elf? dr? L e2f2 o
7" |
1_1 2F sin2F = 0 : {(31)
e?f? r
™
If we try a series expansion around r=0:
1 -1 3,
F(r) F+F r+-2—,—Fr +ﬁF3r +... (32)
one finds, order by order(12):
0(;9) F,=n,m
S S -1 -
1 . 2 =273y = .
0(r*): 5 F =% 2F1._+e2f2 (F; 2F,~2F) 0 (33)
m

Notice that F, is, again, undetermined (see Eg.(l3b)e(lic)); and,

curiously, that the terms with 1/e? cancel separately. Continuing

in this way, we find

an = 0 ‘ncz)
R . - ..' 2
F3' = - _;_ F]S_ l‘.f_ﬁ._g._
1+8 ¢?

32 ., 88..4. 448
24 s H 4 rF 8
1424 ¢% + 192%# + 512¢°
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It is easy to see the relations of the original non-linear-sigma mo

del with corrections order 1l/e?.

The moral of the story is that the Skyrme term is again ~scale
invariant and so the undetermined parameter, namely Fls takes. the

same meaning as before.

Even more curious is the fact that around infinity, is the non-

linear sigma model that commands again . the solution, the contribu~

h th' 16th...

tion of .the Skyrme term giving the gt ; 12 derivatives,

absent in the pure sigma model.

Thus, we can write, in terms of the dimensionlesk& variable n=TF,.r,
for the mass of the classical soliton with a Skyrme term:
11 : . T1 2
M 11 . N | .
0,sk 5 Fl 2ﬁfTl a*-e?fz anwc (34)
. ) ™
® - ' 2
a = 4Idn‘. n'? 'E) + 28in’F{n'}) : (35a)
6 dn’ 3
O Criva sthWH;)' :
c = 8Idnl"ZsinzF(n')F?ln')z'+ " ' (35b)
0 L : n' .
The minimum {at the classical level) is located at
3 [Fa® 7@ - (36)

1
_l _F =2 ‘
ef, é%[%a($)+3zc($a_

The role of e, the Skyrme parameter, is that of a fixed number
taken to obtain a right value for the minimum in the variable Fl‘
in other words, it is there just to provide a stable classical solu
tion, and it is determined to provide some ﬁeeded result.

To summarize this section: we have exhibited in detail the fea-
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tures of the nossible soliton solution to. the hedgehog configuratim of the
SU(Z)'non-linear sigma model. In particular ﬁe have emphasized the
need for a completely undetermined dimensional parameter for the
differential equation to make sense. By the way, this also fixes
the possible values of the chiral angle at the origin and infini-
ty,which in turn determine the value of the bafyon charge. In terms
of this new parameter is possible to understand the instability of .

the classical soliton in the non-linear sigma model.

We have also sketched that the full Skyrme model also shares
these features, being in some sense a natural extension of the non-
linear sigma model, since it is also scale invariant. It is, how-

ever, classically stable.

An intriguing fact is that the stability of the Euler Lagrange
equation for both cases is not guaranteed. As shown in Appendix A,
the second functional derivative of the classical lagrangean is of

not definite sign.

3 SEMICLASSICAL QUANTIZATION. THE CHIRAL QUANTUM BARYON

The problem of the correct introduction of quantization for so
litons deserves considerable.attention(lg). In the realin of the study
of baryons as solitons, the cﬁrrent procedure is rather heuristic
and limited in scope. It only pretends an approximate description
for the lower energy configurations, and it would be urgent to de~-

vise a more formal justification for it.

s

The starting point is to recognize that all configurations ob-

tained from the hedgéhog by an isospin rotation are of the same fi
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nite energy. It can be expected that for the lower energy states,
flavour rotation genérate modes that approximate them. The fla-
vour rotations are then introduced as collective, time dependent,
coordinates, and are quantized applying standard procedures. | In
more concrete form, in the original lagrangean (1), we replace U,

by

U, (r,t) A(£)U_(r)a’ (£) , A(t) 6 SU(2) (38)

Ll

cos Fx) + i'rinik(t)nk sinF(r) - {39)

The final result of introducing Udh;t} in Egq. (1) is

L --Mo+ BTr[QOABOA- ]. (40)

<o
"

139 wf,fr [qr'r'z sin?F(r") (41)
2 by |

and the quantization of such a system is well known. We refer the
reader to the abundant literature on the subjebt(3’4’14’15) .to
save space, and recall two results., The first is that the states
of the gquantum hamiltonian for .the SU(2) hedgehog should be label

led by the same eigenvalue of the angular momentum, 32, and of

isospin, 12:
F2 - 12 (42)

The second is that the hamiltonian is the one of a rigid rotator,

and the energies are given by:
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. 2 . . ’
E =M + % | (431

Notice that both MO and 6 are functionals of the chiral angle in
the classical descriptioh. For quantization of the soliton as a

fermion the eigenvalues of the angular momentum should be half-integers.
(5) '

What was done with Bq. (43) for the Skyrme model wms to fit the masses

of the nucleon and the A(1232), and get values for the parameters e and fn'

What we do, instead(lo),_is to take profit of the exact solu-
tion for the hedgehog soliton, Egs. (14) or (21), and write 6 as

follows.

6 = 2nfr — L Igs' 64 gr25in2p (5. x(s)) (44)
-omg2 — 1 p
T xll (0) 3

In terms of this, and introducing the integral a from Eq. (35} we

have:

E = 2nf2 ¢ SENPE Y. R SENTTNTAR - (45)
x"(©) °  2mflb

Notice that a and b are uniquely given as numbers once +the exact
solution for the classical hedgehog soliton is known. Clearly Eq.
(45) has a minimum as a function of the parameter x'' (0} (or BJ.(43)

as a functional of the classical chiral angle)., We get:

o 2 (21.1)2 1/'! | ..
X = fn[-g 5 ab] - | (46)

We have for the gquantum semiclassical energy of a baryon from

the classical hedgehog exact solution, the chiral qguantum baryon:
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(47)

Notice that, were F2-0 allowed, the mass of the state should be
null. It is easy to see that it is a minimum. The value of the

second derivative of Eq. (45) with respect to x'" (0) is positive:

-:~£ g ;, — 1/ 5
i_..._._ﬁ ~ =@?% (% 2;%) L +1) 30 (48)
A OO BT N |

Of course, xg depends on 32, as Eo'does. An immediate prediction

is the ratio of the masses for the states 3/2 and 1/2. That is:

Eo(3/2) 1/
— = (5} = £ 1,4953 (49)
E _(1/2) '
0
For a conmparisocn,
M(A(1232)) _ 1,313

M(N{938))

It is interesting te have an estimate for the quantities appearing
in Eq.{45). In Nature, provided it is applicable to nucleons and

deltas, Bq. (43) for the Skyrme model gives:
M(A(1232)) - M(N(938)) = 294MeV/c? = 3 %
That is:
1

g = -1 (Mev/e?)"?,
196
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With thig, it turns out that
M = 865 Mev/c?
The contribution of the rotation for the nucleon is.of 73,5 MeV/c?

approximately. The ratio of the .contribution of the rotation part

"to the "inertial" part is:

sl

-3
|
4,

= 0,085

For the A(1232) baryon, the ratio is 0,425,

We can perform the same estimate for the xQB, using the result

of Eg. (46}):

l 32 1 w 3
2" omg2p 0 X -
. . et 4 ._ —— e - 1 32 o - -]; . (50)
Zﬂf; —L—a - 8n? ab
X“

We see that the QB in any case rotates rather fast, and somehow
it contradicts the hope that we are dealing with a slowly rotating
soliton., It should be required the addition of strangeness and
of pion degrees of freedom to find whether some slowing down is pos
sible.

Before coming to numerical analysis of the yQB, we devote next
gsection to consider the approximation of the exact solution for

the chiral angle.
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4 APPROXIMATION OF THE SOLUTION FOR THE CHIRAL ANGLE FOR THE xQB

We have to devise an approximate solution fbrzthe.chiral'angle_
starting from the series developments at the origin and infinity.
This (Egs. (G)land'(lBJ)LCOuld be done by means of the .standard
procedures of analytic continuation. Starting from both ends of
the positive real axis, one could develop'suécessively at nearby
points until both solutions overlap somewhere.

Instead, we have proposed to. use the series at the origin for

(16). In short, an [N,M] Padé

the construction of Padé approximants
approximant to a function f is a rational function made up of poly
nomials of degree N and M at the denominator and numerator re-

spectively:

S - M
n +n1:.‘+ ...+nMx

£ N,M] (x) (51)

- . ' N
I+ dlx-.-i- . ve +de
where the coefficients n, .4, are determined by the condition that

the approximant reproduces the first N+M coefficients of the series

expansion for f:

£(x) - £[N,M] (x) = 0 (x¥+M+1) (52)

00)'differs a little from the

Notice that our previous notation
standard one.

We have made use of the series expansion for X(s) (Bj.(11l)). It
should appear natural to consider the Padé approximants in the va-

riable s?. Since we intend to.represent the function in the whole

positive real axis, we are forced by the condition on X(s) at infi
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nity (Eqg. (26a)) to use all powers of s. Moreover only approxi-
mants of the kind [N+1,N] (s) should be envisaged as they natural-

. 1y have the correct asymptotic behaviour.

However, since the chiral angle should be a function of-défi—ﬁ
nite sign, we can easily convince curselves that the only admissi
ble approximants are of the kind [2K,2K-1] (s) (K=1,2,...). This
. comes out because from Eq. (21) we know that'F(sisgm J?, it means
that the coefficient of the te;m s”? in X(s).should:b; zero; hence,
at infinity F(s) has. a ZEro. Now, by the fundaﬁental.theorem of
algebra a polynomial of order K had K real roots at most. Then,
it has K changes of sign at most (or an even or odd number, modu
lo 2). We need then an odd number of changes of sign on the'negg
tive real axis; eliminating the zero at infinity this leaves only

odd powers for the numerator and even numbers for the dencminator.

Let us be precise. Notice that the asymptotic condition on

X(s), Egq. (26a) imposes:

: . n ‘
X[2K,2K-1] (8) —> 2Kzl _ 4T
2K
and we have:
nZK—l .= 47 dZK (53)
We must now ask that at infinity F(s) goes as J?. Let us pass
s
to the variable t=1/s.
X[2K,2K~1] (£t} = 4nt+ O(t%) = (54)

Which in turn means:
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Moz - Sogey

Rak-1 dax

(55)

or, since Eq. (53) is satisfied, an analogous relation should hold
for the next to leading order coefficients in the numerator and de

nominator:

Ny o = 47dyp 1 . (56)

Let us give simple examples. Take for X(s)} just the first co-

efficient, 1, and lock at the first Padé approximant.

nbénls
X[2,1] (8} = — . {57)
1+d,s+d,s®
The relations (55) and (56) means:
n, = 41_1‘-d2
no = 41Td1
From the condition (52) we obtain
a
iT 4
and
1+
X{2,1] (s} = ar {58)

1 Stf)

The coefficient of the term t? in Eqg. (54) is related to the value

of weak axial cOupling constant,.and”in this case is:
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n d d ;
¢, 12,1] = - [_9 L. (_3.--_ ( L ”]
¢ 2,11 n, &, {67\, 1

= —(4m)? ' {59)
We have, for the chiral angle, near tg O:
F(t) = —m(4m)2t? = -496,100 t2 (60)

Let us now go into the next Padé approximant, [4,3],

n_+n.s+n.s2+n.s?
X[4,3)(s) = L. 2 3 ' (61)

. 2. 2, i
1+dls+dzs +d35 +d4s

The corresponding truncated series expansion goes up to the power

s*. We then have from Egs. (52), (53) and (56):

4 < 17 an _ 17 4r
1715 (3(am2-136) 15 @

135(4m) % - 3808

d. = ,
Z 3360 d
4. o L7 4
B3 T IT20 4
4 - .289 1
4 ~ 50400 4
ny o= dy
n2 = 4'|'Td3
n3. = 41Td4

For (54), we have now:

X[4,3] (t=1/8) = 4nt = 4ﬂcl[4}3]t3;4ﬁc2[4,3]t~4-0(t5) (62)
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with:
. dz -dl
01[4,3]-= az - 1?3:'= 711,194 (63a)
a d,.d a.d
) 1 1 173 7273
¢, [4,3] = -— = e = =1965,3398 _(53b)
2" 4nd, " 4, 4nd?  4na? !

Notice that, from Eq. (20), the value of 02[4,3] should be zero, as
is the corresponding derivative. Repeating the same steps for higher
order Padé approximants for the series at the origin, it is easy to

show that

d ad
2N-2 2N-3

c, [2N,2N=-1] = - (64)
1 d2N 41TdZN

5 THE APPROXIMATE CALCULATION OF PHYSICAL PROPERTIES FOR THE xQB

Let us use now the framework of the chiral guantum baryon to
get the values of several interesting physical guantities. This
rhay help to figure how far it is from the correct description of a
real baryon, and.zn:the:same time provide some insight about the

formalism needed to describe a baryon and its internal oconsistency.

The main point is that for any quantity one arrives at an ex-
pression envolving as only dimensidnal.parameters,xg (see BHj.(10))
and £, and the rest are pure numbers, which only depend on the-
order of the Padé approximant used to approximate the solutitm for
the non-linear classical sigma model lagrangean in the. SU(2) hedge
hog configuration. It is worth to notice that xg.is dependent on

the approximation as well.
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Table I summarizes our results. for the vhysical quantities we
calculated. We shall now describe the calculation and comment on

each column successively.

The first column contains the order of the approximant. It is
not practical to go further than 112,11], which amounts to incluie (20)
derf%atives ‘at the origin of which (10) are not zero. The coeffi-
cients become too small, and the problem of rounding errors is im-
portant. At the same. time some numerical indications we discuss

immediately don't push the need for improvement. The values for

the chiral angle fox different approximants are shown in Fig. 1.

The second column contains the value of the parameter xg at
the minimum of the guantum energy, as given by Eq.(46) in units of
f“. Notice that it keeps growing steadily, though not as fast as
in the first approximants. It is possible, analyzing the numeri-
cal values appearing in Eg. (46), and 1ook1ng:ét the values of the
coefficient 02[2K,2K—11 in the analogous of Eq. (63b), that this
feature may come as a result of the inadequacy of our Padé approxi
mants to represent the chiral angle near infinity (see Fig. 3). In fact,
xg grows almost as the quantity b, defined in Eq. (44), that shows
infinity certainly contribute heavily. In terms of c2[2K,2K—1], it
turns out that this coefficlent gets guite large with the order of
the approximant. The next column expresses the parameter in units
of GeV. The only remark to be made is that we use the .value £ *67MeV
and this is not clearly well understood. At what level of the dy-
namical input should.fﬁ.be taken as 67MeV?

The next two\columns refer to the value of the guantum energy
at the minimum for the state J=1 =-é— It turns out to be remarka-

bly stable. Again; it happens that; though a in Eq. (45) increases
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much slower than b,'its\cubic power grows at almost the same rate
with increaéing-order of the approximant. This is a nice feature,
and stimulates to think that the QB may be a good starting point
for approximating a baryon. Again, if we were using the value of
£, from the fit by ANW we would have obtained more appealing figures
for the mass of the state. Fig. 2 represents the mass of the state

in terms of x" (0).

The next column refers to the value of the weak axial coupling
constant. In the xQB it results. from the fact that. the chiral an-

2 at infinity, with alcoefficient known from the

gle goes like r~
expansion of the Padé approximant used to approximate the exact so-

lution. (see Egs. (54), (59}, (60) and (62}).

F[2K,2K-1] = - mo; [2K,2K-11€2 + O(t?) (65)

with

A A R — 166)
xll(o)x X" (0)r _

We have then for the hedgehog:

U, ¥ 1-mc, [2K,2K-1]t2 0 (67)

Cammaring with section 4, Eq. (33), of ANW,

B[2K,2K-1] = —L— ¢, [2K, 2K-1] (68)
X

O

such that:
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. 2
4nf“.

-4 |

coag WX
'XO

Notice that there is a factor 2/2 between the definitions of £ in
our work with respect to ANW(5). It is also remarkable that this
number independent of the choice of value for f“.is quite stable

for higher approximants.

The remaining columns in Table I contain the'resuits for elec-
tromagnetic and isotopic parameters of the xQB. The last, we shall

show results in a pure number,

The isoscalar mean square radius is defined as in ANW(5)=

<>yt - 3 Ia”' r'2 sin?p () SELE)
0 ar'
o
= - % 1 Ids's‘?'sinzF(s') daris')
xgz- o dS'
-2 1 4 (70)
m "z - .
X® |

The numbers are guite stable, though rather small (emxmﬁmmuﬂly;
for the nucleon, is 0,72 £fm). This may be related to ‘the fact
that QB rotates rather fast,

Again, the isoscalar magnetic moment root mean square radius

is given by the expression from ANW(S) :

2 ..ﬁ_L-mntu-z y dF . .
<r®>y 1e0 % 3 . gs s'" gin?F(s"') rru {71)

We can make same remarks as before: it is.stable,-and surpri
singly in rather good agreement with the nucleon = (experimental

value (0;81 fm}).
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The next two columns contain the figures for the isoscalar and
isovector gyromagnetic factors. Starting from the definitions . in

anw °) we arrive at the following expressions (M=E_ , Eq.(47)):

MXII3
L o .2 -y
91a0 = I b ? AL (72)
b
£2 m
_ 8 g
91. 37— B (73)

With the help of Egs. (46) and (47), we obtain:

Xg

M :
= — (74)
2
1253 TN K
g0 finally:
M2gr?y
- I=0
g T —— (75)
I=0 332
9yar =3 5 | (76)
For the state J= I=-12'- '
_ _ 4 2.2 o o
9rop (I=d=3) = g M<x®>, (77
1
9.y (I=9=3) =2 - (78)

One can test with the experimental values for the nucleon the vali
dity of Eg. (77), and find 5.22, whereas the experimental value is
9.4,

Besides, eliminating J? between Eqs. (75) and. (76), we £find:
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M?%<r?>_ .
9'1_0- =g T {79)
gI-I

5
The same expression is arrived at from the work by ANW( ). Try

ing to test the expression with the experimental values for the nu
cleon; they don't fit. One geté'g1a0==1,ll {Exp.: 1,76) and J1o1°
5,93 (Exp.: 9,4).

Somehow, then, the expressions used up to now need improvement.

Notice that the xQB satisfies.all.these expressions consistently.

A point can be made with respect to the consistency of expres-
sions involving the masses of the states 1/2 and 3/2. In the mo-

dellinciudingrﬂﬁ Skyrme term, ANW(S) used the fact that

3

_ 2
A N =38 ° 294MeV/C

and replaces it into the expression for the gyromagnetic ratios:

: _2 M _ >, _ 4 _ 29 an2
2M_
_ 4 ' . 1
Jra1 =3 M= _ﬂ' -3 (91)
AN
The resulting numerical values are:
9rop = 2,910<r?> o = 1,01
where in the first expression the calculated wvalue for <r%&_0 was

used. Since only purely model information was used, this shows that
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the compléete Skyrme model needs improvements of the same kind as

those required by the XQB.

6 DISCUSSION, TENTATIVE CONCLUSIONS AND POSSIBLE PATHS

In the preceding sections we have expowrded rather widely on the
main properties of the chiral quantum baryon. Let us summarize
in some sentences. We have shown that the outstanding feature of
the solution for the hedgehog configuration in the non=linhear SU(2)

sigma model is the invariance under scale transformations.

This translates into the need for dimensional parameters to
be completely undetermined at the classical level. The addition

of the Skyrme term allows to find a value for this parameter.

At the quantum level, this feature allows a stable solution,

the xQB, for the pure sigma model.

We have shown that numerically many physical parameters of
the ¥QB show a remarkable stability. At the same time, their va-
lues are not quite far but either not quite approximate to the cor

responding ones for the lowest baryon state,

This is not necessarily a fault, The dynamical content "en
jeu" is so scarce that a better agreement with the numerical va-
lues for the nucleon would raise many questions. It is a matter
of discussion, but nonetheléss a matter of wide agreement, that .
the flavour group should be enlarged to SU(3) for .a realistic de-

scription of  the baryons(IY);

It has long been recognized, besides, the need of pionh  ex-

change currents to describe low energy nucleon physics. We are
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now looking for the introduction of both ingredients .into the pic-

ture.

A subject for further study concerns the applicability of = ex-
pressions like Egs. (79}; (80) and (8l1) to real baryons. As- they
stand, they may be of restricted value, only for the hedgehog con—
figuration. But how far real nucleons are from thé hedgehog de-

serves better understanding.

Another point we have been able to show is that improvement is
needed for the representation of the solution of the non-linear sig
ma model at the classical .level. Special care should.be.given to
the asymptotic regime. Physically, this could be tranglated in the

need of a nicer description for the nuclear surface.

We believe that the chiral guantum baryon may: be considered an
inciting possibility towards a self consistent treatment of hadron.
dynamicsnthrough.pure chiral dynamical input. The economy in the
number of parameters, and the fact that the non-linear sigma model
lagrangean and the Wess-Zumino term may possibly be obtained as an ef
fective lagrangean from a gauge theory, makes. it quite appealing.

The traditional Skyrme lagrangean, however, seems to share an
attractive feature, namely, the scale ﬁumrhrmeul). It is broken,
however, already at the classical level, and further work should
be devoted to it at the guantum level. The quantum solution_again
will have a stable minimum, which, to our knowledge, has not been

explored.

In conclusion, it seems that many interesting questions need
to be cleared up; but there is solid ground to believe that a con-

sistent; realistic ﬁicture for baryons, is within range.
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APPENDIX A

ON THE STABILITY OF THE CLASSICAL HEDGEHOG SKYRME SOLITON

The lagrangean of the complete Skyrme model for the chiral an-

gle of the hedgehog is:

g 2,
L = —41ff;‘; der:'r'2 (—df- + 2 sin?p

o ar' r?
. 4sin’F 5 [_QF 3\; sin’F" | (L)
er:rIZ dr' rlZ :

Notice that the pure non~linear sigma model results in the limit

e+

We apply the usual procedure. If Fo is a classical solution
of (A.1), i.e., a minimum for its functional derivative, write any

function in the vicinity of it as:
= ' N
F(r) = F, (r) + eul(r)+ 3 € uZ(:). (A.2)

Substituting it into. (A.1l), after several integrations by parts we

can write L in (A.l) as:

=
"

: 1 2
L0+ EL1+-2- € I.'2

N :
L,+% €°L, (A.3)

Since Fo(r) igs such that the first functional derivative of (A.l)
vanishes, L, itself results in two pieces, one depending entirely

in ui'and the other on u, and its first derivative. It  happens

1
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that the term proportional to. u, is just Li' so, finally:

ar' e?f? ° \ar'?
LI
2 1 2 2
- —=— gin Fommo"r. sin 2_1_7_'{:Z|u1 {a.4)

We see that the term is of not definite sign, and it suggests
that one may have troubles in interpreting the classical hedgehog

solution as equation for the seoliton.
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- Table I: Physical properties of the chiral quantum baryon (£ =

Order

[2,1]
(4,31 -
(6,51
8,2

Xo

(fﬁl
193.73
371.19
625,97
946,86

(10,91 1729.8

[12,11] 2222.4

n
XO

(GeV)
"12.98
24,87
41.94
63.44
84.44
115.90

E
(£,)

o

9.985

8.701

8.179
8.089
8.149
8.418

Eo

(Gev)
0.669
0.583
0.548
0.542
0.546
0.554

-38~

Ia

0.891
1.088
1.161
1.166
1.149
1.128

. 1/2
<x?>: o

(£m)

0.324
0.280
0.206
0,293

0.253 .

0.255

1/ 2

2y
T2y, 10

{fm)
0.676
0.790
0.872
0.900
0.899
0.888

0.067GeV)

gI=0

0.538
0.304
0.229
0.214
0.218
0.228

Itul

2.0
2.0
2.0
2.0
2.0
2.0



CBPF~-NF-032/89
~39- /

REFERENCES

10.

11.

12,

13.

14.

T.H.R. Skyrme, Proc. Roy. Soc. London A260, 127 (1961)

Nucl. Phys. 31, 556 (1962).
N.XK. Pak and H.C. Tze, Ann. Phys. (N.Y.) 117, 164 (1979).

A.P. Balachandran, V.P. Nair, S.G. Rajeev and A. Stern, Phys.

Rev. Lett. 49, 1124 (1982) and ibid 50, 1630(E) (1983).
E. Witten, Nucl. Phys., B223, 422, 433 (1983).

G.S. Adkins, C.R. Nappi and E, Witten, Nucl. Phys. B228 (1983)

552.

M.P. Mattis and M. Karliner, Phys. Rev. D31 (1985) 2833
M. P. Mattis and M.E. Peskin, Phys. Rev. .D32 (1985) 58,

"Some questions regarding chiral solitons as baryons", J.A.

- Mignaco, S. Wulck, Leite Lopes Festschrift, N. Flewry at al.,

Editors, World Scientific Singapore (1988); b.531.

. .E.L, Ince, "Ordinary Differential Equations", Dover Publ. Inc.

(1956}, . 67; F. Brauer and Jonh A. Nobel, "The Qualitative

theory of ordinary differential equations”, Benjamin; p.1lll.

. J.W. Carlson, Nuclear Physics B253 (1985) 149.

J.A. Mignaco and S. Wulck, Phys. Rev. Letters 62 (1989) 1449.
P. Jain, J. Schechter and R. Sorkin, Phys. Rev. D39 (1989) 998.

J.A. Mignaco and S. Wulck, "The stability of the classical Skyrme
model SU(2) hedgehog soliton", preprint CBPF(1989) to appear,

submitted to Phys. Rev. Letters.

J.E. Stephany Ruiz, Ph.D. Thesis, CBPF (1989).

J.P. Blaizot, "Lagrangiens effectifs et;exmﬂékadeSkyrme", Eco

1é 4d'#é de physique'des partnnﬂes,- 18™€ gession, Gif-sur-Yvet

te (1986).



CBPF-NF-032/89
40—

13, G. Holzwarth and B. Schwesinger, "Baryons in the Skyrme model",
Rep. Prog. Phys. 49 (1986) 825,

16. G.A, Baker, Jr., "Essentials of Padé Apvroximants", Academic
Press (1975); J. Gilewicz, "Approximants de Padé", Lecture No-

tes in Mathematics, vol. 667, Springer Verlag (1978).

17. J3.F. Donoghue and C.R. Nappi;'Phys. Lett. 168B (1986) 105.



