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ABSTRACT

A new class of expanding cosmological solutions is derived.
The matter content of these models is a mixture of two interac
ting simple fluids: the first one, homogenecus and - :dsotropic
with equation of state p = (y-l)p the dynamics of mﬁich\; is
given by the FRW equation and the second one an ~ inhomogenous
dust. The 1imiting case of two dusts corresponds to ﬂxﬁSmﬂmnesh
universes:of class II.'A.large subclass of the models evolve to
a FRW phase for all physically meaningful values of the poly
. tropic index y and the curvature parameter k. A gauge condition.
under which the metric .is invariant is shown to exist for k #0.
. In particular it explains why the parabolic model is a pe~

culiar solution. in the class found by Szekeres.

Key-words: Cosmology; -Inhomogeneous models; General .Felativity;

Perfect fluids.
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1. INTRODUCTION

Some time ago, Szekeres [ 1] derived a remarkable set of in-
homogeneous exact solutions of the Einstein field equations (EFE)
without cosmological constant. The source of curvature of the
modéls. is an expanding, irrotational and geddgtic dust.  These
solutions are divided in two classes usually denoted by I and IL
Here, we are parficularly interested in the models of the. :second
clasgs. As .shbwn by Bonnor a'nd- Tomimura [ 2] (hereafter refer-
red to as BT-paper), some models of this class evolve to Frie-
dmann dust.models with curvature parameter k =0,-1. In fact, as
remarked elsewhere [(3], a friedmannian era is established. for
all values of k. Thus, at léast in principle, these solutions
may describe an earlier inhomogeneocus phase of the present uni
verse [ 4].

The S;ekeres? spacetimes has been .extended; “4dntroducting
pressure terms due to matter [ 5-8], adding an isotropic @ radia-
tion [9 ], including dissipative processes = in  the . cosmic
fluid [[10-12] and cosmological constant [(13]. However, unlike
the class‘found.by Szekeres, the matter'coﬁtent.of these‘solu?
tiéns with pressure do not obey any equation. of state. Of course,
this is a rather undesirable feature of these models.

In the Szekeres' universes, the scalerfactor R of their is_ci
tropic bidimensional section has its dynamics driven by | the
Friedmann' dust equation. In certain sense, such property ex-
. plains the evolutive behawior-of these models. On  the .other.
hand, recently [[147], the FRW differential equation was solved

in unified form i.e.; for all values of k -and the adiabatic in
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dex of the "gamma-law" p = (y - l)p.

By combining these facts we propose, in particular, a pos-
sible solution to the well known equation of state problem in
the Szekeres background. In the next section, a unified ap-
proach involving FRW aﬁd Szekereé' type models is developed ard
a new set of exact inhomogeﬁeous models with pressure is | de-
rived. The canonical form of solutions are - given in sec-
tion 3 and some special solutions are shown in  section 4.
Finally, the evolution of a.iargé subclass of  models is

examined in the section:5.
2. UNIFIED APPROACH FOR FRW AND SZEKERES' MODELS CLASS II

In order to clarify the relation between the Szehaxs
type solutions class II and the FRW ones, both will be derived:
here in the coordinate system used in the_paper BT.
2a. FRW Models

" Spatially homogeneous and isotropic cosmological . models
are locally described by the FRW line element. As we will.
see presently a convenient, although unusual, expression for
it is the following

ds? = dt? - a2R2dx? - R?(dy? + 1?dz2) ¢ (2.1}

where
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A= A{x,yv,z), R=R(t) and h = h(y). (2.2)

The functions A and h are given by

A = (ocosz + vsinz) §%2£2!'+ wcos’kKy , 1(2.3)
k : .

and

. sdny if k=1
ha Sij;?z =y if k=0 (2.4)
sinhy if k =-1

In the above expressioné v,v and w are arbitrary functions of
x and k is the curvature parameter. The expressioh5(2.3) for A
was chosen as it appears in the Szekeres' models for k = +1.
Note that unlike the BT paper we are using here the method in
which the metrics.are'analytical'continuation-ofha given  one
by variaticn 6f the parameter k. They used, for k ==1, .h =coahy
instead of h =sinhy [15].

By using definitions (2.3)-(2.4)and comoving frame (VY -—éﬁug) ,
the non-trivial EFE for perfect £luid .in the metric (2.1) can

be reduced to (Appendix A)

p = S (R+k) , (2.5)
R? .

and

(2.6)

o
|
[}

[ %
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where p and p are the mass energy density and pressure respecti

vely and a dot means time derivative.
From expressions (2.5) and (2.6) the scale-factor R

the FRW differential equation

rit + PR+ 352 k=0
where v is the adiabatic index of the usual equation- of

p= (y -~l)o.
A first integral of the.eq..(2.7) can be:written as.

. R \3y-2
R2'= (j%). - k ’

where Ro is ‘a suitable.integration: constant.

. cheys

(2.7)

state

(2.8)

Substituting (2.8) inﬁo.(z.S}, we. obtain . for the energy

density and pressure:

3 (Ro)3Y
p = = ’
- R2 |
0

(2.9)

(2.10)

This class of spacetimes defined in the comoving frame are

conformally flat:; the flow of matter is non-rotating, shear free

R

and the expansion parameter is & = 3 3. Thus, at least locally

the metric (2.1) and the standard @ FRW line element are equi-

valent.

The general solution of eq. (2.7) as given by Assad et al.
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-5=

[14] can be rewritten as.
2’ 12, __%® ; Iy-21/2, o 3vf2
t -t =351k Ry ———-—E.-k == :| (‘fi‘") P, (2.11)

3y=-2

where t_ is a new integration constant, F, and F, are twp hy~-

pergeometric functions

. ~ -1 .
Fl = FB?_ ¥ 1 . f

E ..k'] , (2.11a)
_L_3 1 3, p(X 3?-2] (2.11n

The adiabatic index y in .egs. (2.7}+(2.Lﬂj;£s not restricted to
any interval. In particular, vacuum solutions derived by using cesmolo
gical constant are recovered taking y = 0 i.e; p=-p. In this
case by the eqs. (2.9) and (2.10), the cosmological . uconsﬁant
is A = 3/R2 The constant t_in (2.1l1) is adjustable for each y in

order to fix the time scales used in the literature.
2b. Szekeres' type models

Consider now the line element of Szekeres' : .cosmological

models as given in the BT paper
ds? = dt? - Q2dx? - R2(dy? + h2dz2), (2.12)

where
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Q= AR-+TR°;R==R(t),_T = T(x,t) and A = A(x,y,2z) . (2.13)

Note that due the factor qonstant'Ror the.functium;h and T are
dimensionless.. The functions R and T are arbitrary-and iwill
be determined by the EFE. The function h is given again by the
eq.€2.4);but a new term is added to the function A (cf. eq.
(2.3)): |

A = 4a —il—‘—'gﬂ)z+ (ccosz +usinz)£‘_—'i‘n4ﬂ-—y + wcosiky , = (2.14)
/B _ _ VR
where o 18 a new arbiltrary function of_x;_Fdr the sake of .
brevity we-prefer to define.the function A but, in fact, it
can bhe obtained integrating some . of - the. fieild. &~
quaticns (Appendix.A).

Taking the limit k -0, the function A is reduced to
A = ay? + (ocosz + vsinz)y + w , {2.15)

which seems not to coincide with the expressions given in BT
for the parabolic case. However, transforming to new variables
y'= ysinz and z' = y cosz, the line element of ~.the .section

t = const, x =-const takes -a new form .viz.; af'? =

dy'2 + dz'? - and the function . A can .be rewritten as

12

A=oaly'? +2'%) +vy' + 0z' + o (2.16).
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which is the expression of the BT:paper for k =0. The eq. (2.14) for
'k = +1 is the same one given in BT only if o« =0 but, as re-
marked before the case k == 1 as given there cannot be obtainad
by analytic-continuation as in_(2}141;

The general form of Q function in (2.13) is invariant un-

der the following gauge transform

i
>
+
O
-

A > Al

T>T =T ~ s_-%_ P (2.18)
where § is an arbitreq;y function of x. In particular, as wiil be
seen later, for k =+ lthe o function in eq. (2.14} can : _always
be ruled out through a specific gauge.

In the comoﬁing frame the nontrivial EFE for perfect - fluid

in the background (2.12)+(2.14) can be rewritten as (Appendix A)

3AR (R2 +k) +2RR Rt +TR (RZ +k) -4aR

p = _ . Cy (2.19)
(AR +TR. }R2
s}

_ R R? k .
p—-2§-ﬂ-§2‘; (2.20):
- . . 2. -
RT + RT =~ T(R—-:-—.-l- _l:l_ﬁj__) = -12{—“ {2.2})

o]

These ®quations show that, with T =X (x)R where ) is an ar
bitrary function, the egs. (2.19}-(2.21) reduce to (2.5}-(2.6)
and, as it was exﬁected, locally FRW models are recovered.

As the pressure p in (2.20) is a function of t alone, the

usual equation of state cannot be imposed without loss of
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generality. In fact, an algorithm'involving a definite ' choice
of p has been gddelyﬂxmﬁ.iﬁ the literature in order to generate
exact inhomogeneous solutions E}-9].-In the majority of the
cases some functicnal relationship uniting R and p has . bheen
congsidered but they do not lead to-any equation of state. We
will propose now an aiternative paint of view about the matter
content that seems to avoid. this probliem. “

Initially we remark that the expression (2.20) .«for .the
préssure p is the same one of FRW mddels (cf. eq. (2.6)). More

over, the energy density p given in (2.19) can be rewritten as

p = DFRW'+ Ap (2.22}

Where_pFRw is given by eq. (2.5) and

2RR RT - 2TR (R? +k) - 4aR
bp = e 2 3 (2.23)
(AR + TRO)RZ _

therefore, the EFE imply that the matter content of. these
models can be seen as a mixture of two interacting gimple:
fluids: the first one homogeneocus and iscotropic and the se-
cond one, an inhomogeneous dust, the enerqgy density of which is
given bf (2.23). Now, it seems natural to impose for the &so-
.tropic component, the usual equation of state p.={y—1)pFRw.
Of course, as for dust p =0, the Szekeres' universes are a
limiting case in which the mixture is reduced to two dusts.

As in the FRW models,the funcéion.R also obeys the |eq.

(2.7) and substituting it into. (2.21) we find the final form
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of the differential equation of T
_ 2a
RT + Rt + ( z)nm =5 (2.24)
4]
the solution of which, as shown in the appendix B, is given by

T =g Qz‘i)"a + u_(R—I:) 2 FA%Q‘_F;)(FB_ 1) ,  (2.25)

where B and p are two new arbitrary functions of x add"F_, F

.37 T4
are two hypergeometric functions
el 1. _3y+2 '
Py =Fl3ez 0 w2z ' Z0v-m ¢ MR ) (2.25a)

= _%1:£__ _3y=4 . 9y=¥0 ., ROY o
Fs “F2@y-21 ¥ 2(37-27 ' Z(3v-2)¢ ]‘(i%) 2] (2.25b)

The inhomogeneouswéolutions are comMpletely gspecified
by the expressioné (2.l4ffor the fdnction: A; (2.25)
for T and by the solution of R given in (2.11)~(2.11b). = Of |
COUrse, o a. and p are defined in (2.9)-(2.10) and the - den-
sity of the;inhomogeneous dﬁst.is stablished.mmbstﬂaﬁime,R
and A in (2.23).

If k#0, the functions A and T can be rewritten as

B
i

(ccosz .+ vs@nzl—w—igx + mcosty 7% ¥ (2.26)}

and

H
|

= S(R)F + p@l ) r; - 2(&) (2.27)

o
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where

20

=, - 28 g = 2a

t

By comparing the egs. (2.26)_and (2.27) with {(2.17) and (2.18)
we can see the existence:of a specific gauge in which the func
tion § is given by § = 4%, Thus, if k #0 the arbitrary - func-
tion .o can be eliminated of the expression (2.14) and ; (2.25)
without loss ofgamemﬂjfy; This means.that if a #0, the para
bolic models are a special class of solutions and as the gauge
is vy independent.this.is valid for any value of y. In particular,
this explains why the Szekeres' parabolic model (k=8 , y=1)has,
for instance, an anomalous behavior if o #0 but not ifa=0 (see'

BT).

3. THE CANONICAL.FORM OF SOLUTIONS

By using the BT notation we shall exhibit a canonical form
for all models presented in the preceding :section. Thé . para=
bolic case is determined.taking the limit k -0 in all expres
sions with the term -BIR/RO) of the T function. absorbed in
AR, For_k +1, the gauge freeddm has been used in order to e~

liminate the a function.
3a. Parabolic models (k =0)

A = ay? + (ocosz + vsinz)y + w , . (3.1)
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=11~
3y- -
T = u()TR'y Z da_ RYT p (3.2)
o (3y=21 (3v+2) \R_, | )
| t-t 2/37
R(t) = .Ro- 1 +121(R_0)] » Q@ =AR+ T - {3.3)
&)
3y
P = Ppryg ¥ 8P 7 pFRH R2( R') ’- (3.4)
O
37/2
(31—6)14&(0) ]1}-2:2 R (3.5)
80 = | a(q‘fﬂ N e
2|a/R R\3y/2
R, E‘(R ) (a) Y Oy T3v+2')']
[

3b. Elliptic and Hyperbolic Models (k =:1)

A = (ogcosz + vsénz)gggégx + wcosky , {3.7)
k

3y=2
o (R\g|__1 1
T=8 (R F[‘:;' -3t 32 ¢ 37— k(a ) :I

% RadY 2
y—4. 3y-—-4 . 97-10 ‘RS .
+u ) 4}f3¥- 2) " 243v-2) ‘Z(3vy-2) ¢ ( ]: (3.8)

= Pprw T 6p. : P = (¥ -l)s:-'F]m (3.9)

3y- 2
2R RRT - 2R T(R/R )
Ep = (3.10]

(AR +'I’R°)R2

where the function.R is given in (2.11)-(2;xﬁb1.
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All solutions can be put in parametric form defining . the
Iconformal time by dt =Rdt. In this case, the scale~fac-

tor R(r) takes the form [[12]
sin/E| 32| | 2372
o (: D)
k

R(t)} = (3.11)

where the k-dependent range of © is given by”O ﬁt'g_Téf:iT if
k=1land 0 < 1 < « if k =0,-1. The functions t(t) and T(x,z) are
obtained, in general, substituting (3.11) into (2.11) and(2.25)
respectively.

For any value of k, by a transformation in x, one arbitra-
ry function can be made constant and as.-t0 can be adjusted
fréely,.the models depend on. four arbiltrary functions and one
positive constant Ro.uNote.also that only two arbitrary func-
tions, B and y if k=21, o« and y if k =0, are related with
these inhomogeneous.models. In fact, if k =z1 and Bg,u: are cons
tants the solutions (3.7)-(3.10) generalize the Kantowski-Sachs
models and Bianchi VI type ones respectively [16]. 1f k=0
and «,u are constants, Bianchi I type models have been ex-

tended.
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4, SPECIAL SOLUTIONS

The existence of the FRW type component implies that fwom
a cosmological point of view, the most interesting cases of the
models presented.in the  latter section are just y =.0 (vacuum +

dust), y = 1 (two dusts)and y = 4/3 (radiation + dust).
4a.:.Parabolic Models (k =0}

In this case, .the solutions with y =0,1 and 4/3 are tri-
vially obtained by using egs. (3.2)-(3.5}). We observe that .
considering the usual one fluid description the, Szekeres' pa-

rabolic model is reobtained taking y =1 in egs. (3.2) - (3.6).
- ]
4b. Elliptic and.Hyperbolic Models (k =z1)

In general, the hypergeometric functions are not reducible
to elementary. functions. However, this occur if y =0, 1 - and
4/3. They are given in the appendix C.

(i} ¥ = 0 {(vacuum + dust)

p 1/2 arcsin/k BY T
- o[y ] = Ly ]

(4.1)

p = A + ﬂp I} A= 3/R§ r : (4 » 2)
GUR_
ﬂp =Tt - t [ (4. 3)

QRZ
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Rdcosh(t/RO) if k=1
R = . {4.4)

Rosenh(t/Ro) i€ k=-1

(11) v = 1 (two dusts)

In parametric_form we have (see eq. (3.11})

T = u./E'\.cdth'-;- + -EEB- (1. -%/E cot vk %) ’ (4.5)
sinfi'% 2 R
o _ -\ _ “of. _ sin/kr
R = 30(——/5_), e = 52 = ) ' (4.6)
R
_ _:i o 3 .

o= (2 + a0, (4.7)

4]
3R (S8R -TR )

dp = —2 ”3 e, : (4.8)

. OR

where 0 < 1 < 27 if k =+l and 0 < 1 < = if k =-1.

As in the case k =0, the Szekeres' models can be recomﬁmﬂ
if we -adopt the .one fluid description in thch theingtrg
nergy density (4.7} takes the form

3R (A+B)

b = . (4.9)

QR?
Eqs. (4.5) and (4.9) may be compared to the respective re-
sults of BT paper. There, the numerical factor 3 in (4.5) was
absorbed into the g function-.and for k =+1 the same occurred
with a negatibe sign; explaining, in the latter case, the po-=

sitive sign in (4.9}.
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{414) y = 4/3 (radiation + dust)

T = »3'[ + u (4:10)
rR-pg Sim/kr g - cosr/kr) (4.11)
° vk 0 'k
R 4
- 3 (o
e (R) + Bp (4.12)

o
2R0=@/Ecot/k_'t - (&1 + uw)koec?/k]
_ ot ,

(4.13)

& =

where 0 < v < 7 if k=1 and 0 ¢ v < = ifk =~-1.

5. KINEMATICAL QUANTITIES AND EVOLUTION

As in the Szekéres' universes our models have no killing
vectors, are type D in the Petrdv classification, the 3-spaes
are conformally flat and the flow.of matter is irrotaticnal

and geodetie. The expansion and shear parameters are

ﬁ_ AR + TR
6 =2+ ER+ TR (5.1)
and
1 3 /Rt - TR 2
2 - = T AR N . S Y .
g > dl;l\’a. ” AR ¥ TRo . {5.2)

In the framework of the two-fluid interpretation (5.1} < can
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-16—~
be rewritten as
8 = Oppy + 40 (5.3)
where @ | = 3 R and
FRW R
- rRE ~TR N\ (5.4)
AR-+TR *

Now, by using the eqgs. (5.2) and (5.4) it is easily. obkained .

g2 =

(ap}2 . (5.5)

3R2
o

Thus, the shear tensor and the “anomalous" part of the ex-
pansion A8 are closely related and depend strongly oh-the_in-
homogeneous dust gince T proportional. to R'impliés a0 =g"¥ =0,

The asymptotic behaviour.(in time) of the models can be
studied using the .canonical form of scolutions and taking into
account egs. (5.3)-(5.5).

If the isotropic. component obeys the "strong energy con-
dition" (y >2/3), the models are always singular in the eax-
ly times. In.. this case, as.in the FRW models, the solutions
are essencially parabolic near the singularity (R<<Ro). In
the course of time, if k =0,-1 the scale factor éxpands in-
definitely thus, the -asymptotic behaviour must hé_Jtstﬂdiedﬂ
for large values of the cosmological time &R>>Rb). However,
if k=1 and y >2/3, R_ is a maximum value of R. Then, if a
FRW phase-is\expecﬁed,.the correct -limit to consider is

R + RO. In what follows, the parameter y is restricted to
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the physical interval {1 <y < 2). A1l limits were computed re-

taining the leading terms in the respective expressions.
5.1. Approach to eingular point

By using the eq. (3.2) we find that for R <<R , AR+TR ~
uR (ﬁg) . Therefore, after a trivial variable change, the
metric (2.12) takes, in this limit, the following form

ds? ~.dt? - R24R/R )Y %ax'2 - R2(ay'2 + dz'%) (5.6)

which is homogenecus and anisotropic. In fact, from.egs. (5.3)
and (5.4) a suitable anisotropy scale is measured by AB/BFRw

253 in . this limit The anisotropy strength diminishms with the
growing of y, in particular, if y = 2 the model is isotropic
in the early times. _ |

By using eqgs. (3.4) and (3.5) we can readily obtain with tha

same degree of accuracy
3y

1ima m(—ﬂ) n) . (5.7)
neekz 3y-2 R2 (

and

3y
iim 3{y~-1)
R<<; ‘__I___( ) . (5.8)

From egs.(5.8), (3.4}and(3.6) we find p~p regardless of the value
of y. Then, neaflthensingularity, the mixture behaves as a

simple fluid obeying. the stiff equation of state. Note that in
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this limit, the density of the inhomogeneocus dust given in (5.7)
is negative. However, the.net engrgy density p =P Ry +8p is al
ways positive in accordance with the weak enefgy cbndition. +In
fact, as near the singularity the dust éoncept is ° meaningless
the mixture is to be.regarded;fbr all values of y, as a macro-
scopic representation.of. stiff -gatler in this limit. This inter-
pretation was suggested . in the ~ref. [[9] for a
mixture of isotropic .radiaztion (y =4/3) and dust with negative

density.
5.2. Behaviour at large values of R

As in the: course of time the contributions of the curva-
ture terms are not negligible, the models will be separately e

xamined.

5.2a. . Parabelic Mcdels (k =0)

If o 0, from egs. (3.2) and (2.13) it is easily obtained that,
for R »> Ro' Q = AR + TR(-) A AR. Then, taking into account the re-
sults of the section.2a.about the FRW models,jt_ﬁﬂjows{hat the
homogeneous and isotropdc phase is reached. In.faqt, by using
the eqs. (3.4) and (3.5) it can be.conputed that in  this | limit
58/9

" q, and p v {y=1l)p . For a # 0 similar compu

FRW P " Prru
tations show that the models are homogeneous but anisotropic

for R »>> RO. gpwever, as Ap is negative, an unreasonable re-
sult in this limit (see eq. (3.5)), these scution witha # 0 can be

ruled out in the framework of the two-fluid interpretation.
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5.2b. Hyperbolic Models (k =-1)

In this case, the hypergeometric functions present in the
eq. (3.8) are given in terms of oscillating power series, thus,
a direct analyseées from these. equations about the limit R *>*R_
carmot be made By this method. ‘However, this-problem can-be cinmxﬁmx&ed
through a linear transformation formula of. the hijpergecmetric
functions. By using theidaﬁit?-[l?] F(a,bec,z) = (1-2) "%F (a,
ob;c;;%) and taking the 1limit R >> R_it is easy see that, for

k=1,

s v (B o(@) ]

and EX e

r v o) Tl o ()]s

where ¢, and ¢, are two y-dependent constants.

1 2
Substituting these results into (3.8} it follows that for R>>R0

T~ ¢,8 + c,u, in consequence, AR + TR~ AR. Thus, the - FRW

2
phase for large values of the cosmological time. is independent

of the choice of the.arbitréry functions.

5.2¢c. Ellyptic models (k=+1} L}

For this case, as remarked before, a. FRW phase can be
expected to occur when the "radius”" R is near ~its makimum.
value R . The analysis is simplified observing that  in

the neighborhood of R we have R ~ Q ¥ = —?m?k ~. 0. In .fact,

from eg. (5.5) we find that in this limit 56 ~ 0 and thus,
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8 v 0oy Moreover, from egs. (3.8) and {2.13) it is easy to show,
absorbing the functions g and u into the funcﬁionr A,that for
R » RO.Q-W AR, Then, as in the hyperbolic case., -analogous
results can be.derivedbfrém the hypergeometric functions, com

puting the appropriate limits.

FINAL REMARKS

We have exami:_led.the existence of inhomogenecus cosmologi-
cal models with Szekeres' typg'metric class II and a different two-
fluid, mattter content. Thésle fluids are-.e-xpl-ic-ite}.y. taken as
an inhomogenecus. dust and a FRW polytropic fluid. The analysis
carried in a unified .appﬁoach-revealed several aspects
concerning the relation,..bei:ween..the FRW an;d Szekeres' tj(pe cos-
mological models. '

In the two-fluild solutions the energy-momentum tensor of
each component. is not separately conserved. Thus, there is in-
teraction between. them. However, the --evolu_t_ion -0f the models is
fully adiabatic i.e., only entropy exchanges between the com-
ponents are performed. _

Ahother feature, 'warth_ mentioning, closely related with the
two~-fluid interprétation ..fs the simplicity of the. solutiénm. It
was posgible to obtain exact solutims for all values of k and y.
These solutions are, in general, e:;presse;i in terms of ihyyper-
geometric functions. For k #0 they assume elementary form for
certain valués.of v, among them the. Szekeres' solutbtons. In the

case k =0, the geometrical and physical quantities are given
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for all values of y as power functions of t (compare the results
of ref. [[9] with ours for y = 4/3; in fact, they do not .. - have
the same dyhamics).

Finally, we observe that the Szekeres' parabolic model withu #0
(8 in the notation of the BT .paper)is anr"anomalous“.b.lt.;r_hysiml so—
lution; this fact remains wndltered if we adopt the one-Fluid description for
the .sbluticns. with a #0 presented. here, However in the twe+fluid .inﬁerpre—
tation, as it was shown in the section 5.2a, they +khegome . unphysical
solutions. Thus,. thenunified solutions presented in the eqs.
(3.7)-(3.10) are the most comprehénsiﬁé set .of cosmological solu

tions generated by this. mixture of two -fluids.

tugal, M.J. Reboucas, I.D. Soares, M.M. de Souza, A.F.F. Téi-
weira, N. Tomimura and I. Waga for helpful discussions. ~ One

of us, J.A.S. Lima, is grateful to Capes (Brazilian - Reseaxch

agehcy) for financial suppdrt.
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APPENDIX A

In the comoving frame, the EFE gtV = gMV for the Szekeres' line

= (o+p}v, v, ~pg,, are (in our units 8nG=c=1)

element (2.12) with Tu\)

QR®p = QR® +2RQR - Q,, ;p'z'(o33#hh2024_hh220) (A1)
R’p = - 2RR - R* + h™'h,, (A2)
QRp =-QR - OR - QR+ h™*R7(Q,;+hh,Q)) (a3)
QRp =—QR - QR - R + R71Q,, (Ad)
0 =0,y - h™*h,0, (A5)
0 = Q, - QR 'R (A6)
0 - 4, - 0,R'R | (A7)

where a dot means time partial derivative and Q. E—-a-%(i=2,3§y,z) .
ax
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APPENDIX B

In this Appendix we establish the solution of the differential

equation (2.24) to T function

RT + R+ (322 Re = 2 . (B1)
o]
without loss of generality we take
a=i g, 32
T=n V% fnx) , neg) (B2)

v

Substituting (B2) into (Bl) and using (2,7) and (2.8) we find that

f satisfies the inhomogeneous equation

an

92F - [ 3y+2 £ 3y T oaf k£ yi g
n{l-kn) .t S Eﬂ]_)' - (-3— kn- T — = .
2 | 3Y-2 } Y-z i n (3Y-2)2 (3Y_2)2

(B3)

If =0 and k=+1 the above equation is in the cancnical form of a
hYpergeometric differential equation [18] whose parameters are a=
_ 1 _ 3y+2 _ - .
#}-37:5 and ¢ =S (Iv=27" If k=-1, transforming n +-n the same equa-
tion is obtained. Then, in the variable kn, the homogeneous sclu-

tionxof_(B3) is given by [19}

_ 3y-4
1 1 . 3y+2 | - 2(3Y- _3y-4 3yv=4 910
fﬂFl}wrm'ﬂ%ﬁ"“ﬂf““ F[zm-z) ' 203v-2) mk“]

(B4)

where B and 1 are two arbitrary functions of x. Note that since
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-24-
Fla,b,c,0) =1, a solution to the flat case is readily obtained - in
the limit k +0. PFinally, instead of taking the particular solution
of (B4) f = - 33 which is valid for k#O we take the following uni

fied expression

() _ 2a 1. 3ye2 | |

g T k F(3Y-2 'I¥=-2 7 2(3y-2 ! kn) -l:| ' {B5)
which in the limit k +~0 furnishes
- (k)

g(0) _ lim.£ _ 4an. 56)

S kw0 PT THIZI(3v2)

then, by the egqs. (B2), (B4) and (B5), the unified solution of T,

as a function of R, is

R 4 R - - 20 R :
B(E—) F3 + u(-i-) F4 T (R—) [F3-1] ' (B7)
0 o 0
wheré
_ 7 3y-2
1 1 3Y+2 R _
. _3; _3y-4 9y-10 R)”" | (B9)
=21’ 2(3y-31 | Z(3y-2 e

Let us observe that the hypergeometric functions in (B4) are line-

arly independent only if the parameter ¢ =-oit2

‘Y-—
If vy =%§‘% where p is an integer, it is necessary to obtain the so-

is non-integral.

called logarithimic solutions :since one of the hypérgecmetric functions. in
(A4) becomes meaningless or both become identical. However, the

cases y=0, 1 and 4/3 are all contained in (B7) (Appendix C). As
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the most interesting cases can be derived from (B7) we will not con-

sider in this paper the logarithmic: case.
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APPENDIX C

The function T for models with y=0, 1 and 4/3. In what follows

the .following identities will be useful E20:l

‘Fla,bsbiz) = (1-z)7° , {c1)

1/2

F(1/2,1/2:3/2;2%) = (1-2%) "' °F(1,1:3/2;2%) = 2z~ ! arcsinz’,(C2)

[b=1-({c-a~1l)z]F{a,b;c;2) + =-{¢-éb) F(a,b-1:c;z) —'(_C_-l}' (1-z)Fla,b;o-1:2)=0.
(C3)
Congider now the cases:

(1) v=0

The eq. (3.8) reduces to

: -2- = -2 - L =2
e & r 2z (@) sz (@) ] e
O - o

o

Considering the identity (Cl) it is sufficient to campute F(1,1:5/2;z 2,

where z =k(-—;} . By using (C2) and (C3) we find F(1,1;5/2;2z%) =

1/22-1

(1-(1—z ) arcsinz). Sﬁbatituting into (C4), after some ma

nipulations it follows- that

T =3¢ I:(ﬁ-)z-k]m arcs;:/E(R/R) ' [(—-)2 ]”2. (c5)

(ii) y=1

Now, eq. (3.8) reads

- B(—%)F[lrlrsz(a ):I u(R

1/2

E%,_%,-%{%D] -3
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Note that the above hypergeometric functions have the same parame-

ters of the late case. Only the argument has been modified. De-

O

fining z=k gi and rep&ating the steps given in the case (i) it is
readily obtained |

_ R 1/2 arcsinJEXRﬁz)l/zr R, 172
T = %[1_(%_]9 . o +p(-§--k) {C7)

(1ii) v=4/3

T = s(%)s‘[}/z, 1-/2;3/2;k(§13;)2] . (c8)

.‘2 )
By using the identity (C2) and taking zak(ﬁg—-) in (C8) we find
o] .

arcsinvk
LN
/E
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