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Abstract

We simulate d = 2 polymer growth by allowing for a branching probability b and an
impurity concentration ¢ (0 s b, ¢ = 1). Inthe (b, c) space we find a critical line
(locus of vanishing order parameter and diverging correlation length) which separates
infinite from finite growth regimes; in particular, a nonzero critical value for b exists

even for ¢=0.
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Polymerization is an extremely important phenomenon which, during the last
decades, has been modeled and studied in a variety of manners. The simplest, of course, is
the random walk. The first non trivial complexity arrives when the polymer is not aliowed
to cut itself, i.e. the self-avoiding réndom walk [1,2]. In this case, growth stops
whenever the randomly chosen growth direction leads onto an already occupied site.
More realistic models have been introduced in which the growing end tries to avoid
occupied regions; in this category falls the so called knetic growth model [3-5].
However, even in these models unavoidably occurs the steric hindrance effect |5], i.e., the
growth necessarily stops because the polymerization has occured in a narrow "cul de sac".
This effect determines the nature of polydispersion (hence of the viscoelastic
properties[6]), the consequences being particularly dramatic in two dimensions, in which
case the growth stops with probability one. Nevertheless, the statistical reievance of this
hindrance effect has never been focused in detail, as far as we know. In the present letter,
we generalize the kinetic growth model by allowing for branching (or ramification) of the
polymer as well as for impurities (see, for instance, [7, 8] for relevant features about
branching). We shall exhibit that the competition between hindrance (due to both self-
avoiding growth and impurities) and branching will bring up interesting phenomena
associated with a new kind of phase transition. This type of critical phenomenon should
be relevant in the discussion of real ramified polymers [1,9]; the inclusion of impurities in
the model can be useful in the discussion of a variety of substances {(e.g., commercial
polymer paints, in which the colour is obtained through addition of tinny chemically inert
pigments).

Let us consider an L x L square lattice in the center of which we start, at 1 = 0,
growing a polymer. The growth direction is randomly chosen among the four possible

first neighbors. At ¢ =1, the growing end
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avoiding manner. Successive bifurcations will of course generate a grest number of
growth ends. At every time step 7, each one of those ends is sequentially visited (in a
clock-wise-like manner foliowing the sequence of births) and can bifurcate with
probability b . For a particular growth end, bifurcation can effectively occur only if at
least two first-neighbors are unoccupied. If only one first-neighbor is available, it
necessarily grows in a linear manner. If no first-neighbor is available, that particular end
stops growing. The process is continued as long as at least one end keeps growing, or
unti! at least one end touches the contour of the L x L square lattice. The entire
experiment is then repeated Negp >> 1 times; this constitutes the ensemble over

which we perform the averages (noted < - > ).

We note N the number of occupied bonds (linking first-neighboring sites), i.e.,
the number of connected monomers; in a real polymer, N is proportional to its total
mass. If b=0,then N=t. If b=1, then Ns 2/-1. If O0<b<l, N
becomes a random variable satisfying <N> s [(1 +b)-1]/b; the equality holds
for arbitrary ¢ if the self-avoiding restriction is either relaxed (i.e., ran;lom walk branched
polymerization) or inoperative (e.g., on a Cayley tree, or on a- d - »
d-dimensional Bravais lattice). In the thermodynamic limit (L -+ ®), < N> can,in
principle, either indefinitely grow with ¢ (infinite growth regime) or stop at a certain
range of ¢ (finite growth regime). ln practice, once the growth has stopped, a polymer
will be said "infinite" if at least one of its growing ends touched the L x L contour;
otherwise, it will be said “finite". We note Py  the fraction of polymers that are

infinite, and Py (N) the distribution law of N , corresponding to the finite
polymers.
In addition to the "mass", it is interesting also to measure the (linear) size s of the

polymer. This was done as follows. Once a particular experiment stops growing (either

because it touched the L x L contour or because steric hindrance stopped all the growing
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ends). we determined the smallest rectangle (paraliel to the L x L square) and noted s,
and s, the lengths of its two sides. Wedefine s = ﬁ,}T} (this choice preserves the
area) and note P; (s) the distribution law associated with finite polymers;
the mean size E m < s> plays an important role, namely that of the correlation length
in standard phase transitions.  The fractal dimension dy of the branched polymer is

defined through < N> o E,

To the best of our knowledge, branched polymerization in the presence of impurities
has never been studied. To do this, we shall extend the model we have just introduced.
More precisely, let us assume that, when growth starts, a8 concentration c € [0,1]
of site impurities has already been randomly frozen in the lattice. The growing branched
polymer must now avoid, besides itself, these obstacles . The influence of impurities on
the quantities of interest (e.g.. Px and E) is followed. A particularly interesting
question' is to see whether impurities introduce a new universality class in the problem.
Indeed, it must be noticed that, in this extended model, steric hindrance will be due to two
different sources, namely self-avoidance and impurities, which can or ‘c:'annot be overcome

by branching. .

Let us now present our results. We have typically worked with 300 = L = 5000
and 200 = Ng, = 106 . Some polydispersion curves Py (N) are shown in Fig.1.
We verified that, in almost all points of (b, ¢} space, Py (N) decays exponentially with
N (Fig. 1.a). There is, however, a (critical) line on which the decay is a power-law (Fig.
1.b). We can see (in Fig. 1.b) that, for ¢ =0, the critical value for b is b (0) = 0.055.
On the other hand, we see, in Fig. 1.3, that <N >= 1/0.0097 « 100 for b=¢ = 0.
Consequently, on a basis of Flory-like arguments [1], one would expect bom1/<N> =
0.0097, much lower than 0.055. The reason for this discrepancy comes from the fact that
Flory's arguments rely on the hypothesis that the polymer pieces that are linked are equally

sized. This is not the case in our model because steric hindrance makes most polymer
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pieces shorter and shorter as time goes on, consequently the corresponding < N> i
smaller than 100. hence b(0) is expected to be greater than 0.0097, which indeed is the
case. We can also check that the discrepancy with Flory's arguments increases ( i.e.,

< N > b{c) increases) with increasing c.

In Fig. 2 we exhibit typical results for the polymer mean size £  as a function of
(b, ¢) as well as of the square-iattice size L. In Fig. 3 we present the order parameter
Poo(b, ¢) as well the phase diagram in the (b, c) space. Finally we present, in Fig. 4, a
typical example of M vs R, where M is the polymer mass contained in a square box
(centered at the origin of growth) with linear size R, in a L x L lattice. This log-log
representation yields the fractal dimensionality dr.  From this type of construction we
extracted dfe2 = 0.004 for the points inside the infinite growth region (e.g'., (be) =
(0.1, 0)). On the critical line we obtained values for df monotonically varying from 1.83
(at (b, c) = (0.055, 0)) to 1.76 (at (b, c) = (1, 0.4072)). This slight variation is perfectly
consistent with a single universality class (characterized by df = 1.8). Nefrertheless, to
definitely exclude a mnon-universal behavior along the critical line, more extensive
simulations should be done. The point (b, ¢) = (1, 0.4072)- corresponds to
percolation (we remind that the critical vatue 1 - 0.4072 = 0.5928 is the site
percolation threshold {10] ). Indeed, the polymer can grow only in the subset of points
which are not occupied by the impurities. See Fig. 5 for a typical growth at this point:
note the existence of regions belonging to the infinite vacant cluster that will be never
occupied. To make this point obvious we have also run trifurcating (instead of
bifurcating) polymers, and have obtained full occupancy of the infinite vacant cluster.
For this case we have consistently obtained df = 1.896, which precisely recovers the
value [10] associated with (site) percolation. Since this value is definitely different from
df »= 1.76 corresponding to bifurcations, we believe we are herein exhibiting a new

universality class, clearly related to the incomplete filling of the infinite vacant cluster.
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To conclude, let us remark that the model herein introduced presents a rich
phenomenology which mimics real branched poivmerization in clean or diﬁy medium. In
particular, it gives us some insight on how impurities can affect technoiogically imporﬁam
properties such as polydispersion. Other studies of this new model would be welcome.
For exampie, the triangular lattice enables the easy realization of higher-order branching
(trifurcations, tetrafurcations, etc). Also. it seems intuitive that, for d > 2, b(0) should
be smalier than 0.055 because the steric hindrance effect would be less efficient.  Finally,
one could consider anisotropic or directional growth, anisotropic or directional branching,
polymers growing (from the very begining) from both ends or from various seeds, or even

growing on pre-existing nontrivial networks or in their intersticial regions.

We acknowledge useful discussions with S. Roux, S.F. Edwards, H.J. Hilhorst,
Per Bak, M.D. Coutinho Fitho and D. P. Landau. We thank the support from CNPq,
FINEP, PADCT and CAPES (Brazilian agencies). One of us (C.T.) is grateful for the

warm hospitality received at UFRN. -
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CAPTION FOR FIGURES

Fig. 1 - Polydispersion distribution law: (a) finite growth phase (semi-log representation,
L = 1000 and Ny, = 106 ),  (b) on the critical line, i.e., for (ba(c), ¢} (iog-log
representation, L = 1000 and Nq,, = 20000).

Fig. 2 - Typical results for the b-dependence of the mean size £ (1000 = N, = 20000)

Fig. 3 - (a) Typical results for the order parameter as & function of (b, ¢); we used
L = 300 (the small tails at Po, = O disappear with increasing L). (b) Phase
diagram; we used 300 = L < 5000 (the full line is a guide to the eye); the inset
schematically represents Peo(d, c). _

Fig. 4 - Log-log determination of df for the critical point (b, c) = (1, 0.4072)
(L = 5000 and N,,,, = 1000).

Fig. § - Typical fragment of a polymer (shaded structure) grown in a 50 x 50 lattice with a
particular random realization for the impurity sites (filled dots), for the critical
point (b, ¢} = (1, 0.4072). The regions A and B belong to the infinite
cluster of vacancies but have not been occupied by the bifurcating polymer;
region C is a finite cluster of vacancies (and is consequently, inaccessible to the
growing polymer).
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Fig. 5
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