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ABSTRACT:

A gauge theory of self-dual field is constructed by
adding a Wess-Zumino term to the recently studied
formulation based on a second order scalar field Lagrangian
carrying with it an awdliary vector field to take care of
the self-duality constraint in a linear fashion. The two
versions are quantized using the BRST formulation feollowing
the BFV procedure. No violation of microcausality occurs and
the action of ordinary scalar field may not be written as
the sum of the actions of the self- and anti-self-dual

fields.
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1. INTRODUCTION. CHIRAL BOSON:

In a recent study {1] on the quantized theory of
self-dual field Cchiral boson), it was pointed out that the
following second order scalar field Lagrangian with an
auxiliary field Bﬂ to take care of the self-duality

constraint

£ = co o coHed + B, S A C12

posed no preblem. It is the natural one and should not be
abandoned ([2]. The action (13 is Lorentz invariant and
contains a bilinear term in the (dynamical) scalar field ¢
contrary to the auxiliary wvector field which appears only
linearly. From the resulting Lagrange egns. of motion we
derive aud ¢ = 0, ¢t + & 2B, = 0. We do not find the
Klein—-Gordoen eqn. for all the components of the auxiliary
vector field. In fact with a convenient notation we may
obtain aya“ CB°+B,‘) = O but no propagation equation
., however, results for CB°-B‘). It is clear, therefore, that
Bl-' may not be declared , a priori, a dynamical field at this
level. The =situation is analogous to the case of the
Lagrange multiplier field A° which enforces Gauss' law
constraint [2] in Yang~Mills theory and the Lagrange eqns.
do contain space—time derivatives of this field, It is only
after we have implemented (3], say, by using the Dirac's
procedure [4}3 for constrained dynamical systems, all the

constraints and eliminated the superfluous auxiliary fields
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in order to obt.aih the reduced Hamiltonian that we may
decide as to the real physical degrees of freedom in the
classical theory over which a reduced phase space
quantization may be based to start with. We may .as is
usually done [8) now a days, decide to enlarge the phase
space by adding to the theory Lagrange multiplier fields
along with the ghosts, which’are treated as dynamical fields
and satisfy the graded commtator algebra. The quantization,
say, using functional integral, may then be conveniently
done without the need to compute Dirac brackets.

For the action C1) it was shown {1] that following the
Dirac's procedure f4l a self-consistent Hamiltonian
formulation could be constructed. The field B” is eliminated
due to the two non-trivial second class constraints in the
theory .which imply I'llm--l'l1 =0 for the left-mocver, leading
to the reduced Lagrangian . ¢ - ¢'> ,which shows that only
¢ is the dynamical field. It was also found that it is the
field ¢ which satisfies the self-duality condition and that
no violation of the micro—causality occurs on canonically
quantizing the theory. This is in contrast to what is found
for the dimension zero bosonic field formulation suggested
by Floreanini and Jackiw {8} ,Cinspired on the formulation
of Siegel [2]), where @' instead of ¢ is found to satisfy
the self-duality constraint and the micro-causality is
violated. It was also pointed out that the action of the

ordinary scalar field may not in general be written as the
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sun of the actions of the self and anti-self-dual fields. In
another paper we showed that the second order Lagrangian far
a chiral bosonic particle {7)] may also be written in the
form analogous to €1). It was quantized following the BRST
f8) formulation and its propagator (7] obtained following
the BFV [9] procedure. |

In the present paper we construct a Wess-Zumino [10]
term corresponding to the self-dual field action (13. Its
function is to cancel the undesired mode menticoned in the
previous paragraph and it results in a gauge theory of
self-dual field with only the first class constraints. Using
the BRST ({8) formulation we quantize the two versicons

following the BFY [21 procedure.

2. GAUGE THEORY OF CHIRAL BOSON. WESS~-ZUMINO TERM:

The Lagrangian of the *gauge invariant®' action, 2 = e
+ 272 sfor the self-dual field, resulting in the first class
constraints and which generate gauge transformations is
constructed by adding to the action (10 the following term
for the Wess-Zumino field €& with a coupling to the auxiliary
vector field

2% = Co s 6 cded> + @ ¢’ + M B, 2

Indicating by M, p“. l'ie the momenta cancnical to ¢, Bp.

6@ respectively. the basic weak primary constraints may be
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wlyom
‘o 1 o 1
written as T’.E p tp—28 & O, TZE p-p =% 0 and the
canonical Hamiltonian is found to be, ¢ £,, = 1, oo -nu
= 12,
= 1 - - 2 1 /2 ¢ - L
ﬂ‘.'c 2 ] Bo B‘] + 2 P + CBo-t- B‘J & p ﬂe
1 2 ]
- =8 + &#CB +B)D LC b
2 1 ()

where a prime indicates the space derivative. The primary
Hamiltonion is ar’ = Wc + u T‘ + v Tz where u, v are
arbitrary functiconals of the canonical variables. On
requiring the persistency in time of the primary constraints

it leads to the following secondary constraint

T=nN-B -B -¢/ + &6/ + M. .D>=0 C4d
a o 1 e

The extended Hamiltonian is 2‘.’2 = a’1+ A T’ and we derive

{an overdot indicating the time derivative)

T = = = -1
Ty =4 T, =4 T,.%¢ } =-T, =0 s

while ‘i"=’if'z= 0. No more constraints are generated, ‘I'£. Tz’ Ta
are first class and '1'3 satisfies the free field equation
apo“ Ts= O. It is convenient, without any loss of
generality, to remove the trivial constraints T‘ and Tz by
imposing the gauge-fixing conditions Bu = 0, B‘ x 0. The

Dirac brackets constructed with respect to the set
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1;'1;'30’31 of thé remaining variables ¢, &, I, ne coincide
with the standard Poisson brackets. We may easily show that
en requiring the persistency in time of this set of
constraints we are lead to u = v = 0. The Hamiltonian is

then given by

9!'=a'.'°+k'1' B
where
e =i+t ?-12g? 7>
o 2 2 2 © 2z

and T= T = n-g¢ + fy + 6/ x 0 with T satisfying the free
field equation. Conseqﬁently. its decomposition into
positive and negative frequencies makes sense. The canonical
variables satisfy the standard Poisson bracket relations and
the local gauge transformations generated by T are found to
be & ¢Cx0 = 6 BCx> = ux, & MK ==& M 0 = -u(x>’. The
first order action corresponding to the Hamiltonian (GO,
where A is a Lagrange multiplier field, is invariant under
these transformations if we assume & AN = u. The canonical
quantization may be performed by the usual prescription of
replacing the Dirac brackets by the (graded) commutators of
the corresponding operators multiplied by (-i> ,using a
symmetrized form to avoid operator product ambiguities and

,following Gupta-Bleuler ({111, by requiring that the

physical states satisfy

Ccn-g¢ +mn,+e > Phys>=0 |
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In the next Section we quantize both the gauge invariant
version (8> and the gauge-non—invariant description (1) of

the self-dual field using BRST [B) formalism.

3. BRST-BFV QUANTIZATION:

Consider first the . gauge invariant formulation
described by (8>. We follow the procedure of ref.[8). The
Lagrange multiplier field X along with its conjugate
momentum l'l’\ are now treated as dynamical fields over an
extended phase space to which we add also the fermionic
ghost fields n and 5 alcng with the corresponding canonical
momenta P and P. The non-vanishing equal time graded

brackets of these variables are
P,;}={F,n}={n,x}:{n,.p}:{n , 8 = cad
: N .

suppressing a delta function, &x-y), on the right hand side
of (). The nilpotent conserved BRST charge is simply Q = P

M, + »n T while the anti-BRST charge is §=-P n, + p T. We

construct the following effective action

se”=fd’x[n&,+neé+nxi+§;ﬁ+5P-§o—{n,w} )

105

where W is an arbitrary suitable gauge-fixing fermionic
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operator and ﬁ.”o = ® + 7 O‘F is the BRS improved
Hamiltonian. The quantized theory is then obtained from the

following functional integral
Z =N f {d u} exp Ci S_. .0 c11)

where {d u)} is the Liouville measure of the extended phase
space, {d uj =[d¢}[dl‘!3{de]Idﬂelidk}[dnx][dnltdﬁltdr_ﬂ[d}’] and
N stands for the normalization factor. A convenient choice
for ¥ is founq to be ¥ = é @ n + P A where 8 1ls a parameter.

We find

i — 1 —_
o, ¥y =Len -aT+PF+ i c12d
{ t=ze@0n, PR

The contribution of the ghosts to the functional integral is
a field independent factor which is absorbed in the
normalization. Making now a shift transformation HB ) He -8
- A we obtain a Gaussian integral over l'le which is also
absorbed in the normalization constant. The effective action

then reduces to

- z a- L] _
S o™ fdxne+ oA
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13

A functional integration over Hh now brings in the integrand
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the delta functionai & CA - = &. Integrating over 8 and

B

making 2 + O leaves us with the effective action

- 2 « _ 4 2 1 42 _ a1 .2
Saee faxtng 2 1 R AR N3t Sl ) S

C14>
A further shift transformation A + A + T - @’ gives a
Gaussian integral over A  which is absorbed in the

normalization and we are left finally with the following

action (1]
4 r O P .
Seffmfdxtn¢ M ¢’1 C18)

The same result may also be derived on starting from
the action given in <¢1). Following the Dirac procedure and
removing the trivial first class constraint TzE po__ p’ x O
by rhoosing the gauge condition Bo- B‘ = O, which in its
turn determines v = 0 if wo require its persistency in time,
we are left with the following, after a convenient

rearrangement, second class constraints in the theory [1]

G =0 -/ —w+ N/ =0 , F=1n_ =0 cie

Here w

B + B’ and I ,= Cpo + p") and the nonvanishing

o]

N =

bracket is {w(x.t.).l‘lmCy.t)} = 8(x-y>. For G and F we find

{c. F} = 1, {6, 6} = {F. F} = 0 Q17
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The cancnical Hamiltonian in the present case is given by

(e - a® + ¢'%1 + w ¢ c1ed

X
n
N

It is tempting to look at G as a first class constraint
and F as a gauge-fixing condition. However, we easily derive
that the wvariation induced by G , & ﬁcx & Cm-2 is
non-vanishing. In order to quantize the theory with second
class constraints using functional integral, we may use the
formulation (12,13} based on an OspCil,1{2) invariant path
integral. For the nilpotent BRST operator we take the

sympetric form {121

= %
N = 7 [ pnCG + 2> + P (F +Hh) ] ciad
Here we have rewritten as A and ﬂk the Lagrange multipliier
fields that enforce the pair of the second class constraints
G,F, The extended phase space contains now ¢, o, X, %, n .0,
nm. nh,
cad.

P, P. They satisfy an algebra analogous to that in

The effective action now is

- 2 - - - e = - -
Sy JdxtM@g+N w+M X+ npP+ypP-2x ~{0,¥ )

wher e a; is given by (18> and the path integral (112> is now
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defined over the phase space under consideration here. It
reproduces [12] the reduced phase space path integral by the
Parisi-Sourlas {14] mechanism and we avoid constructing the
Dirac brackets.

A convenient choice for ¥ in the present case is ¥ =

¥YZ¢ = F n + P XD where 8 is an arbitrary parameter. We find

o

—- 1 1 —_
{n.w}-xcs+x)+EFCF+nxJ+PF+ﬁnn c21>
The ghost contribution may be ignored as before. The
integration over ﬂk brings down a delta functional &( % l'lm -
i) which allows us to integrate over “w and in the limit 12 »

0O we obtain

= z b — -’ — -

Syrg _[dxcnqo XCl~g/- o+ XD - ) 22

Performing a shift transformation w + w + 1 - ¢’ + X the

integral over w gives a constant normalization factor and

the action reduce to
1

- 2 '__ 2 2
se”-j‘dxrnqo 2 G+ ¢/ =+

i

1 - a?3E . L 42
p n P’ D P by

1
23
which results in the same expression as in (18) after

performing a Gaussian integral over A.
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