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Abstract: We calculate the Green functions of the two versions of
the generalized Schwinger model, the anonmalous and the
non-anomalous one, in their higher order Lagrangian density form.
Furthermore it is shown through a sequence of transformations that
the bosonized Lagrangian density is equivalent to the former, at
least for the bosonic correlation functions. The introduction of
the sources from the beginning, leading to a gauge-invariant source
term is also considered. It is verified that the two models have
the same correlation functions only if the gauge-invariant sector
is taken into account. Finally it is presented a generalization of
the Wess-Zumino term, and its physical consequences are studied, in
particular the appearance of gauge-dependent massive excitations.

PACS Numbers: 11.10.Ef, 11.10.Lm, 11.15.Tk.
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I)Introduction

Since long ago [1,2], gquantum field theory has been widely
investigated in two dimensional space-time, essentially with the
hope of getting a deeper understanding of the quantum field
mechanisms and that it may be translated in some way to higher
dimensions. Indeed this has been done principally through the quest
for models in which some types of interesting mechanisms work. This
is exactly the case of the chiral Schwinger model (CSM) [3], that
was introduced by Jackiw and Rajaraman as an anomalous gauge model
that, despite of this feature, is unitary and renormalizable. The
essential idea underlying the interest in this specific model was
that of obtaining a model which dispenses with the Higgs field.
This happens because the model presents a dynamical mass generation
and concomitantly does not depend also of a "closing of family" in
order to prevent the anomaly and preserving the consistency of the
theory. This with the eyes pointing at the non-appearance of the
top particle. Later it was discovered that the model could be
thought as a gauge-fixed version of a non-anomalous model, provided
that its functional measure were correctly manipulated [4,5]. After
that, a lot of papers have appeared discussing a variety of its
peculiarities and, in particular that the Wess-Zumino (W2) term
does not change the physical content of the model [6-13]. More
recently, people have been interested in a model that contains as
particular cases the o0ld vector Schwinger model (VSM), the axial
Schwinger model (ASM) and the chiral Schwinger model (CSM) [15-20].

This last model, the generalized Schwinger one (GSM), has been
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treated perturbatively by Chanowitz [15], who discussed some
ambiguities in the specification of the anomaly, and the WZ term
was also considered. Posteriorly Miyake and Shizuya [16] have
worked on the fermion content of the nodel, and Boyanovsky,
Schimidt and Golterman [9] used it as a starting point to do a
comparison among the VSM and CSM properties. After that, Wotzasek
and Naon ([17] studied its bosonized version through the Dirac
algorithm and also the case of massive fermions. Furthermore Shin
Lee and Lee [18]) leaned over the problem of their currents and
energy-momentum tensor, and Alonso, Cortes and Rivas [19] used it
to discuss the regularization ambiguity in Fujikawa’s
regularization [22]. More recently Dias and Linhares [20] presented
the point-splitting computation of the fermionic determinant, and
discussed the various classes of regularization. Furthermore this
author ([21], starting from a gauge principle, obtained gauged
bosonized theories, applying it for the GSM and alsc in the case of
2 + 1 dimensions.

However, as far as we know, most of these papers discussed the
models through their bosonized version, because in the functional
formalism this is a possibility to rewrite locally the non-local
gauge field effective Lagrangian density. Meanwhile, as we will see
below, this non-local Lagrangian density can also be traded by a
local one through the using of the decomposition property of the
gauge field at two dimensions but, in this case, one is faced with

a higher order theory. Here we intend to study the generalized
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model in this version, showing the equivalence with the bosonized
one, and discussing both the anomalous and the non-anomalous one.
In this last case we will introduce two types of gauge-fixing. They
contain as particular cases the ones appearing in the literature.
We will discuss also the gauge-invariant correlation functions,
showing that they correspond tc the anomalous ones as observed by
Girotti and Rothe [12], this time using a modified source term in
the generating functional as suggested by Linhares, Rothe and
Rothe [10].

All the computations will be done in the functional integral
formalism and, as the generalized Schwinger model {(GSM), like the
CSM, has a singular point for the regularization parameter (M2==gf
in the GSM and a = 1 in the CSM), this case will be treated in a
separated way. The arbitrary parameter case (Mzatgf) will be
solved through field transformations that become singular when M =
gf, enlightening, in this formalism, the origin of the problem with
this parameter choice. Then, in the case M = gf, we will use
another approach in order to solve it.

In the last section of the article, we will argue about the
introduction of a novel and generalized WZ term. After its
presentation by using the same method of Harada and Tsutsui (5],
we will investigate the physical consequences of its postulation.
In doing so, for the sake of simplicity, it will be considered the
cases of the VSM, ASM and CSM. The first two are used to get some

confidence in the mechanism because of their well-stated physical
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properties. Finally we construct one possible realization of the

WZ term for the CSM and find out a surprising feature, that in this
case the dynamically generated mass of the gauge field is no longer
arbitrary, but is fixed when an appropriate gauge is used.

Another remarkable consequence of using generalized W2 terms
is that, even when the gauge invariant correlation functions are
used, some arbitrariness does persist in their definitions. This
arbitrariness could be used, for example, to overcome the
misbehaviour of the gauge propagator at low coupling constants,
which has generated some controversy [7,12}. In fact it appears
somewhat strange that, differently of all other gauge theories, the
non-anomalous CSM and by extension the non-ancmalous GSM, could be
the only ones having their gauge propagators with the same form, no
matter what gauge~fixing condition is being used.

The paper is organized as follows: In section II it is
presented the model in their two versions, the anomalous and the
non-anomalous one. Still in this section we prove the equivalence
of the bosonized and higher-order versions of the model, at least
for the bosonic correlation functions. In sections III and IV we
study the cases of M = gf and M = gf respectively. Section V is
devoted tc the generalized WZ term and its peculiarities. Finally

in section VI we do our final remarks.

II)The model and its versions:

The Lagrangian density for the generalized Schwinger model
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(GSM) is given by
= u 7 My — v o, = =
2=7 7,(i8" + epat + e P2ty (1/4)Fquu + 32"+ P+ Ty,
(1)
with the source terms included and P_ = (1/2)(1 & 7.)- The fermion

and gauge fields can be decoupled through a suitable

transformation,
b = exp[-17,(g,n + 9,20 + 1(g,m + g0 |v* = vy, (2a)
b=y exp[-i15(g1n +g,x) - i(g,n + glx)]w' = 'O, (2b)

where 1 and ¥ are identified with the longitudinal and transverse

components of the gauge field A
Mo

" as we will see below. Using (2)

and also the identity e = - 7075, valid in the two-dimensional
Minkowski space-time, one decouples the classical Lagrangian
density, giving

L=y’ i"'uauw' = (1/4)Fuﬁpuv * JIJA” * E'ﬁs.c * EUSW'- (3)

Besides, as a consequence of the non-invariance of the functional
measure under chiral transformations, there 1is an additional
effective term in the Lagrangian density, coming from the
reqularized Jacobian [22]. Taking this into account, we have an

effective higher-order Lagrangian density given by
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2= g (v, + (1/2e9x o'x + (1/2me%) (gf - M)mom +
+ (1/2me’) (9] + Wxax - (g,g,/me’)mox + (1/e)T (" +
+ % x) + T L + Tuy’. (4)

where M> = a e°, a being the arbitrary regularization parameter,

g, = (eR - eL)/z, g, = (e, + eL)/z, and wn{x) and x(x) are,

R
respectively, the longitudinal and transversal components of the
gauge field, that in 1 + 1 dimensions can always be decomposed as
= uo
EA,u = au'q + € ao_x. {5)
From the above identity one can get two others,

n = ed.Afo, ¥ = —ed.A/o, (6)

where we defined: 38.A = 3“A“ and 3.A = epaaahp. Using these

identities and an additional one

eﬂpeVG — guagpv - guvgpa' (7)

all valid in two dimensions, we get for the effective Lagrangian

density the expression [9)
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-7=
g = P iy v aemaof + e - (g + g +

+ g.g,(8"3" + 'é""a")/u]av + 3 A% + O ¢+ Tuyr. (8)

M

This non-local version can also be rewritten in another local
form, by introducing an auxiliary field. Besides we can discard
the sources and integrate out the fermions, obtaining the

bosonized Lagrangian density {[9)
= Mo By _ ny M
g, = (1/2)8,98"% - (1/VT) (9,9 g, Ve 0n, + (/2ma At 4
- HV
or, in terms of both Au component fields,

g, = (1/2)8,98"9 + (1/2e%) (o) * - (1/evA) (9,80 - g,8%x)8 0 +

2
+ (M2/2ne ) [auna“n - an

xa“x] : (10)
It is not difficult to see that these two local formulations, given

by Eq.(4) and Eq.(9), for the GSM are equivalent. This can be seen

by doing a transformation in the bosonization field ¢(x),

$(x) = ¢/ (x) = (g,/evm)n(x) + (g, /evm)x(x). (11)
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Furthermore, this transformation has a trivial Jacobian for the
functional measure. So, integrating over the ¢/(x) field we get the
same Lagrangian density as that in expression (4), apart from a
trivial redefinition of the generating functional normalization. So
we have shown that both local versions, one based in a higher order
Lagrangian density (4) and the other with usual derivative order
but with the introduction of an additional field (9), are
equivalent, because in the transformation necessary to link these
expressions, the fields 7n(x) and x(x) remains unchanged in form,
and they are the ones which appear in the correlation functions, as
can be seen from the generating functional.

As far as we know, almost all the works that discuss the
chiral Schwinger meodel (CSM) {3-14] and GSM [16-21], are based in
the bosonized version (9), the only exception is the work of
Chanowitz [15), that works in the fermionic version through
perturbative methods. Here, we will study the higher order version
of the GSM (4), in its anomalous and non-anomalous formulations,
and take the appropriate limits to check out our results against
those in the literature.

The non-anomalous formulation of the Lagrangian density (4),
can be easily obtained through the substitution of the
longitudinal component of the photon field by a gauge-invariant
combination. To do this we introduce a compensating field 6(x),

the Wess-Zumino one, so that
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A, + A, + (1/e)gA, nsm+A,00-A (13)

then substituting n(x) by n(x) + 8(x) in expression (4), we get the
non-ancmalous higher-order formulation of the GSM model,
¢ = g (iv e + (1/2e7)x o'x + (1/21€°) (g} - W) (0 + @)u(n + 6)

+ (1/2me’) (&2 + M)yxox - (g,9,/me’) (n + @)ox, (14)
where we omit the source terms for future convenience.
IIT) The M = gf case:
First of all we solve the anomalous GSM through the use of
appropriate field transformations, to get a decoupled Lagrangian

density. It is not difficult to see that doing the transformations

below in Eq. (4),
9,9,
n=7"+ ——5----x'.x=x', (15)
g -»
one obtains

AGSN E'(iwua”)wr + (1/2e°)x’0(o + m')x’ +
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=10~

9,9
+ (1/2ne®) (g% - M) n'on’ + (l/e)J‘u[au[‘n' + IZ_ELE..F]Z:] +
g, -

+ eupapx'] +90g + Tuly’ (16)
where
= [(g,8)? - (F - W) (a2 + )] an
n(M -g?)

is the dynamically generated mass of this model, and we have done
the transformation in the source terms also. As the sources
generate the correlation functions of the original fields, all we
need now is to do the usual functional derivatives with respect to
these sources and, using the free propagators of the transformed
fields, get the required Green functions. At this point one can see
why the case M = gf (2 = 1 in the CS5M) must be treated separately,
as observed in the Dirac quantization for the CSM [6); in the
present approach this is easily seen because the transformation
{(16) becomes singular for this case, so one should substitute this
condition in the Lagrangian density and, only then, search for the
decoupling transformations. As an example of a Green function we

compute the photon propagator, that comes from

2
Duv(x-Y) = - & Z/BJu(x)BJv(y)'kﬂ. (18)
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~11~

This way we get the propagator in the momentum representation,

2
_ 2 9,9,
D, (k) = =(1/e ){kukvn,,, + [kukv + [ﬁ] Eu‘iv)nx,]}. (19)

1

from which, after the substitution of the free propagators of 7/

and x’, we obtain:

D .. (k) = (i/(K*- m%)){-g . + -——l——-— k k [n +
uy uv (yz_ gf) MV
- (1/x%) (g + g:)] + (g,9,/k%) (k K, + Eukv)]}. (20)

that is in agreement with that obtained inlthe literature for the
anomalous GSM through the Dirac formalism [17].

Now we will solve the non-anomalous GSM, by performing
decoupling field transformations. For this we need to break the
gauge symmetry. This is done through the introduction of a
gauge-fixing (GF) term in the Lagrangian density. In this work we

will use the two GF given below:
(1) = .2 2 2
%m = -(1/2a) (8.A + B 8.A)" = —(1/2ae”)(om ~ B o¥)}", (21a)

and

{'.(“)

o = -(1/2a)auea“e, (21b)
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=12~

where « and 8 are gauge parameters.

Using g;’, one decouples the Lagrangian density (14)

performing the following transformations in the fields:

9,9 -
9=’ +Bx, x=x', 6 =0 +|—22_ " Blys (22)
g? - M

1

so that we obtain the decoupled Lagrangian density

= ) _ =, u 2 2
Il L ¥ (1y, 8¢’ + (1/2e)x’ofo + m)x’ +

+ (1/2n€’) (g° - M*)6’08’ - (1/2a€’)n’a’y’ +

+ (1/@).1""[‘9‘“(11'r + Bx') + e

.u.oapx'] + 9708 + TuLy. (23)

Taking the functicnal derivatives with respect to the source Ju, we
are led to the expression for the photon propagator,

= - 2 i
Duv{k) = =(1l/e )[kukan, + (Bku + ku)(Bkv + Ev)Dx,], (24)

where Eﬁ & kP. Using now the free propagators for the fields 7u’

Cup
and x’ we get

Dy (k) = —(i/ (k%- m)) [g,_w - [1 + g% - o+ aamszz]kukv/k2 +
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“l3=

- B K, + Kukv)/kz]. (25)

This last expression, as far as we know, has not been obtained
before for the GSM. It can be checked through its particular

cases, specifically that of the CSM. For B = 0, M=a ez, g, = =g

1 2

= e, it corresponds to the (ii) case in the work of Harada and
Psutsui [13], and for 8 = (a - 1) ! to their case (iii).
Now if we use the second GF condition Eé;’), the decoupling

transformations are

n = *nf + [ig.é_]xf - gf ¥ = xf 8 = g’ (26)
r ’ r

(g~ %)

also valid only for the M = gf case as can be easily seen. The

transformed Lagrangian density in this case is

g =g 4 gUg

GSH :‘.F (1/2e°)x'o(o + n)x’ + (1/2m€’) (gf - Mynfon’ +

g9
+ (1/2a)@’pe’ + (1/e)J“[a [nf + [___.._.1._3__._];,5: - ef] + € apx'] +
“ (g>- M) ke

+ §r07C + Tuge’, (27)

leading us to the photon propagator given by
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=-14-

1
= (i 2= n?))4- e | | KX 2 2
Duv(k) (1/(k m )){ guv + [ e giz)] [ " V[(Ue } (te” +

- a0f - @) + (1K) ((ase?) 0f-g) - (g} + oD ]] +

(9,9,/X°) (k K, + ’.Eukv)]}. (28)

This case can also be compared with the results of the CSM by
particularizing it. For the case a = 0 the anomalous result is
recovered, in agreement with the results for the CSM [7,13].
Besides it is possible to eliminate the misbehaved term in the

coupling constant (1/e2) .

IV) The M = gf case:

Now we are going to treat the case where M = gf. For this we
will develop an alternative way to calculate the correlation
functions, without need to discover the decoupling
transformations. In this approach we rewrite the bosonic part of
the Lagrangian density for +the non-anomalous GSM (14) in a

natrix form

£ = (1/2)p'™ p, (29)

(=)
another. Then we can compute the correlation functions by

x
where p = [ 'n], and M will differ from one gauge fixing to
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=-15=

inverting M, obtaining

<X x> <y m> <x 6>
M =] <px> <npn> <ne>|, (30)
<@ x> <@ 7> <6 8>

where the elements <y x>, <x 7>, etc. , are the two-point
correlation functions of their respective fields, from which one
can write down the other ones as, for example, that for the photon
propagator:

<A B> = “(1162)[k“kv<ﬂ > + kuﬁv<n x> + Eukv<x > + Eﬁiv<x x>].

(31)

It is important to remark that, in the construction of the matrix
M, we must to symmetrize it with respect to the principal diagonal,
as a consequence of the hermicity requirement.

One more time we will start by solving the anomalous version.

Here the matrix M is written as follows

o+ (g +d)/n - gg9g,/n

M = (o/e?) . (32)

- glgzln 0

Inverting it, collecting the terms <n %>, <y nw>, etc.., and

substituting them in (31), we get
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-16-~
D (¥) = (/9,91 [k, [me/(9,9,) = (g% + 92)/(9,9,)) +

- [kniv + E“kv]], (33)

in agreement with the result of the calculations on the anomalous
GSM appearing in Ref.[17), where the Dirac quantization method was
used. In particular it is seen that this case does not generate
mass dynamically.

Now we apply the approach sketched above to the case of the

(1) (11)

non-anomalous model in the gauges imposed through EGF and ch
respectively. In the first case M is given by
34
(1-g%/a)a + (¢ + g)/m  (B/a)s - gg/n - gg /m) 34
M =0
o (B/a)o - g,g,/m -(1/a)o 0
-g49,/nm - 0 0

Substituting the correlation functions <n 7>, <n x>, etc. in the

] [} e — - 2
expression (27) and using the relation kukv = guvk + kukv' we
find
o k k
= H v
<AuAV> = nC . (35)

Surprisingly this shows us that one could gauge away this
correlation function in the Landau gauge (a =0). In a certain

sense, this reinforces the idea of using gauge-independent
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.17

correlation functions, as we will see more below.

In the second case the nmatrix M is

2
N d) -(g,g,/2n) - -(g,g,/2m) .
M= (o/e) -(g,9,/2m) 0 0 (36)
-(g.9,/2m) 0 (1/2c)
and the photon propagator is
<AuAv> = n(kukvsz) [kz - (g: + g:) + a(glgzh/r_t az)] +
- (n/g,9,) [(ku'Ev + Eukv)/kz]. (37)

Again, we find a nasty behaviour in the coupling constant that

can be eliminated when a = 0. This time, however, the propagator
cannot be eliminated through a convenient choice of the gauge
parameter, as in the previous case.

From the results obtained above, one can observe that the
gauge-dependent correlation function <AuAv> changes drastically
from one gauge to another. Now we will discuss the case where the
source terms include the WZ field [10]. In the bosonic case the

source term becomes

(1] i = o
JH[A + (1/e)d e] Il (38)
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-18~

where A:l is a gauge-invariant field. Now, one can see that the
propagators in the above gauges, or in any other one, will be the
same as that of the anomalous model, as previously observed through
different approaches in the CSM [12]. As an example we compute the

gauge-invariant photon propagator in the M = gf case, so obtaining

I

I
= <
Duv(k) Au

I, _ - 2
Av> = <AMAP> (/e )kukv[<n 0> + <@ N> + <8 e>] +

- (1/32)[kuEv<e x> + Eukv<x e>]. (39)

Then, after straightforward calculations we get the same propagator
as in the anomalous case, appearing in (33). It is not difficult to
convince oneself, after a little experimentation, that this will

happen with every gauge-invariant correlation function.

V) On a generalized Wess-Zumino term:

In this section we intend to look for the possibility of the
introduction of a generalized Wess-Zumino term. For this we will
proceed analogously to Harada and Tsutsui [5]. In that paper they
show that, from a careful dealing with the functional measure, that
term appears quite naturally. Their starting point was the integral
over only one representative of each class of the gauge field
configurations in the vacuum-to-vacuum amplitude. This was done by
using the Faddeev-Popov trick and then "unfixing" the gauge, going

to an integral over all the gauge field configurations (equivalent
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or not). Let us see now how to do it in our case. Defining A [A] by

2
Af[A]Jdg s[f{A“ ]] =1, (40)

where g is an invariant measure on the gauge symmetry group G.

Then, inserting (40) in the vacuum-to~vacuum amplitude we find
— 2 —
Z = |5y D aa A [A]dg s[f[A" ]]exp[i I(w,w,A)]. (41)

Performing now a transformation in the integration field
1

Au » A:l , using the invariance of the measure dAu and of A [A],

comes:

z = [Dw Y] oA, dg s[f[Aq]]exp[i I(w,ﬁ,n"-l)], (42)

L]

where DAua dAuh{[A]. Now, transforming the fermionic fields like
¥y W =gy , ¥ T =%g, (43)

and remembering that the fermionic measure is not invariant (for
anomalous models) under this transformation, we obtain finally

that

Z = an PV })Audg 8[_f[A°]]exp[i [I(w,W,A) + a(n,g")]], (44)
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=20~

where we used that I(y?,9%,A9"') = I(y,V,A). This expression, in
contrast with (41), is totally gauge-invariant. This way we have
"unfixed" the gauge defined by f[A] = 0. As an example we will
treat the case of the Schwinger model in a Lorentz-type generalized
WZ term. This is done to illustrate the differences between the
conventional WZ term and the generalized one, in a very well
established model. )
Let us begin by writing down the Lagrangian density for the

bosonized vector Schwinger model (VSM),

te3 (1/2)8,00% + e Vo0 A, + (a e /2)a " - (1/4)F P, (45)

where we choose g, = 0, g, = - Vi e and M = 7 a e® in the
equation (9). This model is invariant under the Ggauge
transformations &8¢ = 0 and aAu = -(1/e)8uh, provided that the
arbitrary parameter be fixed such that a = 0. On the other hand
this parameter can be kept arbitrary if it is introduced a

conventional WZ term {5),

g = 8 edte + 8 ¥,
vz (a/2) ue (] a e ue A (46)
In this case the mass of the model is computed as m> = (a + 1)e2/n,
and this was done without 1loosing the gauge invariance.
Furthermore, the usual mass ezfn is recovered when a is chosen to

be equal to =zero. In this case, the WZ wvanish, surviving an
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=21~

infinity that can be absorbed in the functional normalization.
Now we will introduce a generalized WZ term of Lorentz type,

and will study its conseguences,

g = -(1/2a) (6“Au)z + (a/2}a“98“e taeap a* - (1/20e®) (08)? +

- (1/0e)oe auA“. - (47)

Now imposing a gauge-fixing term of the type (ii) (with a gauge

parameter 7), one gets:

B+ €& /n 0 0
M = (n/ea) 0 -ofa - aeafn -ofo - aezln (48)
0 -o/a - aezfﬂ -p/a - (ajm ~ 1'1)32

inverting the above matrix and computing the gauge-invariant

photon propagator we find

. K k (k® - n®)
1 i [ [T 1
D' (k) = - g + ———| 1 -« . (49)
Ly (k2 ~ mf) 1 uy k2 (k2 - "ﬁ)
where mf = ezfn and mﬁ = o a ezfn. As can be’seen from above, the

more remarkable feature of the generalized WZ term, is that of
appearing gauge-dependent massive excitations like m . Besides we

see that, in this case, the arbitrariness on the regularization



CBPF-NF-030/92

-22-

parameter appears in the gauge-dependent mass, so that it
disappears when this mass is gauged-away. This is done by working
in the Landau gauge (a = 0), leading to the correct propagator in

this gauge, but now without any ambiguity in the mass (mf = ealn,

2

mo= 0). Furthermore, the case a = 0 (the case where the usual W2

term vanishes) brings us to the usual propagator in a Lorentz-type

gauge,

X k
D! (k) - i [-g + BV gD ax? - e2ml ).
My (X2 - Bzfn)l uy k2 /m)

a=0

(50)
Showing us that the generalized WZ term does not changes the
photon propagator, when it is used its tjauge—invariant version
D;v, as should be expected from a well-behaved WZ tern.

A similar study can be made in the case of the axial Schwinger
model, finding analogous results. Also in this model the
generalized WZ term , contrary to the usual one, leads to the
conclusion that the mass is not arbitrary but it is precisely equal
to that of the VSM, when the gauge-dependent mass is eliminated.

Now we are going to treat the case of the chiral Schwinger
model (CSM}. As it is well known, this model is an anomalous ohe
and, when it is added with an usual WZ, get its gauge-invariant
counterpart. However this model in contrast with the VSM, does not
have its mass fixed through the requirement of gauge invariance in

both cases. In the anomalous case, there is none available choose

of the parameter a such that the anomaly be canceled, and in the
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second case the gauge-invariance is kept for an arbitrary value

of a.

The case of the CSM in a Lorentz type generalized WZ term,

when written in the form (29), can be obtained from the GSM with

the charges g =e and g, = -e, giving the matrix
D+ 2e21n ezfn | ezfﬂ
M= (o/e’)| e®/m  -ofa+ (e*-M%)/m -o/a + (e2-M%)/m 1, B
e’/ -ofa+ (€M) /m -ola + ((1 + 7 Ne -M%)/n

(51)

whose inversion gives us the following elements in the momentum

representation,
2 2 2 2
< x> = e gnka - g(H 2- ea)) (52a)
nk™ (kX" - mI)(k - mn)
ae'
<X N> =< x) = r <X O> =<8 x> =0 , {52b)
nk® (k*- ) (k*- u)
1 [ 4 [ 2 2 2
< o> = - nrk + |a|ne™- 7(H?— e )] - 27e +
m? (k- o) (k- n?) | [ ]
+ aez[w(znz- ez) - 232]}, - _ (52¢c)

<n 8> = <8 B> = /K>, <8 6> = - y/X, (524d)
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where we defined that,

1/2
mf = (1/211) [[az(Mz- e2)2- 4ea(aM2- gz)] + a(Mz— ez) + 232],

{53a)
1/2
mz = -(1/2n)[[a2(nz— ez)z_ ae® (aM®- ez)] - a(MP- &%) - 22%|.
| (53b)

From the above elements one can compute, for example, the

gauge-dependent two-point Green function (31),

1 [ 2 2
D.(k) = - ~g  |k® - a(MP- %) /u] +
v (k*- mf)(kz- mﬁ) l uv{ _ ]
*k X, + Kk k )/nx° - Sty k*+ - 1)ne? M- e?
+ote(uv uv)/'ﬂ' Wﬂ? (o )rre-‘r[oc( -e) +
+ 232]]1124- aezlnz- 3e’+ 7(2M2- 32)/1!]]}.- (54)

Alternatively we can calculate the gauge-invariant correlation

function (39) obtaining,

1 1 f 2 2
D .(k) = - -g [k - a(M~ e )/n] +
uv (k- n?) (k= nd) | M
2k k. + Kk 2 Kl X2 M2 2
+ oe (ku v + n V) Jn - ——;I—]-{'—z-“-[(a - 1)ynk™+ a{(M - 3e )] . (55)

Once more the Landau gauge is the one in which one of the
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masses vanishes, for o« = 0 mﬁ = 0 and mf = 2e2/n. In this

convenient gauge, the photon propagator D;v(k) is equal to that of

the VSM but with a different mass for the gauge boson.

Now one can see that the generalized WZ term acts in such way
that the massive excitation in the CSM is no more arbitrary. As
can be obtained from (17) the anomalous (or even the non-anomalous
with usual WZ)} has an arbitrary mass m= M‘fn(ug- ea). However the
introduction of a generalized W2 leads to a fixed value of the
mass for the gauge boson of the model (mﬁ= 2e2fn), similarly to
what happened in the cases of the VSM and ASM as we have seen
above in this work. In fact it is easy to see that this value for
the mass cannot be obtained through a real value of the arbitrary
parameter M.

Another important observation is that now the gauge-invariant
propagator Dﬁv' maintain some arbitrarity in the parameter «,
although the parameter 7 is eliminated. So, this propagator,
differently to the case of the wusual WZ [12], keeps its
arbitrariness through the parameter «. This feature opens the
possibility of using a generalized WZ term of o~type (ii), fixing a
gauge where the bad behavior of the CSM for vanishing coupling
constant (the term I/ez in the propagator) (3] be gauged-away.
Moreover these models have as a characteristic that the parameter «
cannot be arbitrarily fixed, at least when one wishes to keep
unitarity.

As in the case of usual WZ term, we must study it in a
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situation where M° = gf, or M° = ez, because we are now treating
the special case of CSM. From the above discussion one could expect
that this care would lead no more to a physically different content
for the model (in the case of the usual W2, it has not a massive
excitation). This is so because now we see that the physical mass
of the model, which appears when one works in the Landau gauge,
does not depend on the regularizing parameter.

Let us see if this indeed happens. For this we take the
matrix (51) and impose that M°= e®. Then we invert it obtaining
the two-point correlation functions <y x>, <x 7>, ete. . It is
easy to see that these expressions match with that in (52) when

= e° is substituted in the latter. Consequently the masses are

now written as,

m o= — [1/_‘——1 -a + 1], (56a)

2 e?

m o= - = [Vl - - 1], (56b)
from which we see that when a = 0, m§= 0 and mf = 2 eZ/n as

supposed above. Moreover, in this simple case it becomes clearer
that, in order to keep the theory unitary, one must restrict the

range of validity for the parameter o (0 = a = 1).

VI) Final remarks

In this work we discussed the higher-order version of the GSM
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in its anomalous and non-anomalous versions. For this it was used
the path-integral formalism for the quantization, and inside this
framework two methods were used, one looking for decoupling
transformations and then doing the functional derivatives with
respect to the sources to get the correlation functions, and
another where it was calculated the elementary two-point
correlation functions and then compute the full correlation
functions of the gauge field. This was performed both in the case
where Mz gf as in the singular case with M= gf (a = 1 for CSM).
The corresponding Green functions were, when available, compared
with that of the literature. Moreover it was verified the equality
of the gauge-invariant correlation functions with that of the
anomalous model as stated by Girotti and Rothe in the case of
CSM [12].

Furthermore it was introduced a generalized WZ term in an
analogous fashion of Harada and Tsutsui [5)], whose consequences
were studied in the particular cases of the VSM, ASM and CSM. It
was observed that this term has as fundamental feature the
introduction of further massive excitations, and that these have a
gauge dependence through the gauge-parameters. Another interesting
characteristic 1is that some of these gauge-dependent masses
disappear in an appropriately chosen gauge, and that the resulting
mass is precisely that of the physical model, without any
dependence in the regularization parameter. This is well

exemplified in the VSM and in the ASM,
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As a consequence of applying this generalized WZ to the case of
the CSM, we saw that it makes the mass renders unambiguous in a
quite surprisingly result. If it is true, it would be a very good
result because the ambiguity of a physical mass is not a pleasant
thing. However, the confirmation or not of a such characteristic,
deserves a further study on the constraint structure of the theory
with the generalized WZ term. This should be done in order to
conclude if this new WZ, as the usual one [8,9), does not alter the
physical content of the model, or if it corresponds to a new model,
in the sense that it has a completely different Hilbert space and

particle spectrum. We expect to report on this in the near future.
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