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ABSTRACT

A quark-diquark model of the nucleon is applied to a perturbative QCD de-
scription of several decays of the charmonium family: 7., Xc0,ct,c2, — pp. Both
experimental data and theoretical considerations are used to fix the parameters of
the model. Decay rates for the x’s in good agreement with the existing experimen-
tal results may be obtained. The values for the decay of the 5, are found instead to
be much smaller than the data. Our formalism provides a general framework for
the computation of the decay amplitudes of any 25+1L, C = +1, heavy quarko-
nium state into hadron-antihadron. The explicit expression for the decay into two
photons is also given.

Key-words: Diquark model; Perturbative QCD; Charmonium decays.
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Introduction

The presence of diquarks as constituents inside nucleons has been extensively
discussed in the literature [1] and seems to be well supported both by theoretical
and experimental arguments. In a previous paper [2] we have computed the 5. —
pp decay, at the tree level in perturbative QCD, modeling the proton with a quark-
diquark (¢@Q) system. Contrary to pure quark models [3], this approach allows to
obtain a value for the decay rate which differs from zero. Its actual numerical value,
however, still depends on several poorly known parameters, some of which have
been fixed by comparison with other processes computed in a simplified version of
our model [4,5].

We extend here the discussion of Rel.[2] to other decays of the charmonium
family, in order to be able to fix the parameters and to provide a consistent check
of our scheme. That is, we consider a full set of exclusive processes, in the same
energy range and in the same framework, and we see if our model can give a
good description for all of them. The energy range is that of the masses of the
¢€ mesons, where diquarks are supposed to act as quasi-elementary objects, and
the framework is the modified Brodsky-Farrar-Lepage scheme [3], already used in
Ref.[2] and, with scalar diquarks only, in Ref.[5).

We consider the 5. and xo,1,2 decays into pp. We fix the values of the charmed
meson wave functions in the origin by computing the decay rates of n, and xo,2
into two photons and comparing with the experimental data. We derive some of
the remaining parameters by fitting our result for the decay rate of x3 — pp to
the experimental data which, in this case, are well established. Other parameters
are fixed using theoretical considerations.

We obtain a reasonable agreement with the known data on the decay rates of
X1 — pp; we can also get a result of the same order of magnitude for the decay
rate of Yo — pp, in agreement with an existing upper bound. We obtain, instead,
much smaller values for the decay rate of 5. — pp, to be compared, unfortunately,

with a seemingly very large experimental result. If such a disagreement should
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persist, even with more precise data, it would be a problem for the application of
our quark-diquark model to the description of exclusive reactions.

The pian of the work is as follows. In Sect.1 we present our scheme and give
the explicit formulae for the computation of the helicity amplitudes for the decay
of any 25t1L; heavy ¢g state into baryon-antibaryon. In Sect.2 we compute the
elementary helicity amplitudes for the process ¢ — ¢Q§Q and give the helicity
amplitudes for the considered charmonium state decays into pp. In Sect.3 we give
the general expressions to compute the decay rate of any 2°+2L;,C = +1 heavy
¢g state into two photons: in particular we obtain, in the non relativistic limit,
the decay rate for 7., xp,2 — 77, in agreement with Ref. [6], and use such results
to fix the values of the charmed meson wave functions in the origin. We also give
the decay rate of the expected f.; state into two photons. In Sect.4 we discuss the
diquark form factors and give numerical results for the decays into pp. In Sect.5

we draw our conclusions and make some comments.

1 - General formalism

In analogy with the QCD scheme of Ref.[3] we describe exclusive interactions
by the convolution of a hard elementary process, involving free hadronic con-
stituents, with a soft part, the hadronic wave function which models the hadroniza-
tion of the constituents into the observed particles.

In the intermediate energy region we are considering (energy transfers of the
order of few GeV) non perturbative or higher twist effects are still important.
Following the program explained in Refs.[2,4,5,7] we model some of these effects
by considering diquarks, bound states of two quarks, as active constituents. Such
an assumption is supported by a large amount of experimental and theoretical
information {1].

In our scheme, the helicity amplitudes for the decay into two baryons (BB)

of a 39%1L, 5 (c2) state are
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Ape (6) = 3 dzdy &*k {< BAglhply; ¢Q; Agrq >
Agrgirg Agiiehe

< BABlhBIZ; q@; AQAQ > Ti'qA)ﬁXQAQiA:AE(E’ 8, z, y)
< ky 8 AAalhelk; J, M, L, § >}

1.1)

where Tg?) is the center of mass helicity amplitude which describes the ele-
mentary annihilation of ¢ and € into quark-antiquark diquark-antidiquark pairs
(ce — ¢Q7Q); the operators h describe the hadronization process of the elemen-
tary constituents into mesons and baryons. By assuming, as usual, that ¢Q and
@@ are collinear, the baryonic wave functions < Blhg|¢Q > and < B|hg|gQ > de-
pend only on the fraction of the baryonic momentum y(z) carried by the diquark
(antidiquark). The amplitudes depend on the quantum numbers J, M, L, § of ithe
initial charmonium state, on the helicities Ag, Az of the final particles BB and
on the decay angle § between the baryon momentum and the quantization axis of
the spin of the decaying particle (chosen as the z-axis). The initial wave functions
are defined in the momentum space and k is the cZ relative momentum. All the
sums over the flavours and colours of the constituents are not explicitely written
for simplicity of notation.

The hadronization operators are supposed to be diagonal in angular mo-
mentum space; that implies Ag = Ay + Ag, Ap = Ay + A3. The transformation
from the canonical base |JMLS > to the helicity base |A.Az > is given by the
usual Clebsch-Gordan coefficients. By inserting the explicit expression for the

25417, ; (c€) state wave function and after some algebra Eq.(1.1) can be rewritten

as (8]

L
Ag) 2L+1\? _1is
AJ?WL’S‘“Z( yym ) Cf: A,Acﬁrﬁjx
Ache

X / Ak Magagiaoae (85 0,8, k) D3fs (B, @, 0) pe(k)

(1.2)
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where 1, is the charmonium wave function, A = X; — Ag,

Mazpgirere = 3 / dzdy ¥, (V)¥ 8,0, (%) S2mid+2q Bagirg+2g X
AApiAgAgiQ
x TJ(\?JE,;AQ AgireAe ?

(1.3)
and the ¥p ,, are the baryon wave functions. The relative momentum of the ¢
system, k, has been expressed in spherical coordinates in terms of the polar and
azymuthal angles & and 5. After integration over « and 3, Eq.(1.2) should give
the correct angular distribution for the decay of a particle with quantum numbers
J and M into BB, i.e., the angular dependence of the helicity amplitude 4 must
be given by the rotation matrix element dif.‘\n- a0}

The formalism defined through Egs.(1.1-3) is quite general and applies to the
decay of any ?5+1L ; heavy (¢§) state into baryon-antibaryon.

2 - Decay amplitudes for 5.,x0,1,2,f2 — pp

We will consider the decays of charmonium states with C = +1. The corre-
sponding elementary processes are given by the two gluon exchange diagrams of
Fig. 2.1. These diagrams contain only vertices with one gluon line attached to a
diquark line. This allows us to use in our computation the most general couplings

of scalar (S) and vector (V) diquarks to gluons (*), given by: -

§* = —ig,T5(Q — Q)*F,
V* =g, T5{(g - €3)(Q@ — Q)" G
— (@ - eg)eg)* ~(Q - 3)(€5)"1Ga (2.1)
— (g - QNey - Q)Q ~ Q)*Gs}

(*) For couplings with two or more gluons attached to a diquark line the most general form (allowed

by Lorents, gauge invariance, ete.) would be much more complicated.
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(1-y)p yp

‘\9’: /\Q,m
C! Ac} ]
i 1

+

b '
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y 4y :
‘\f:r A */\Q,J
- (l - z)ﬁ —2p

Fig. 2.1 Feynman diagrams for the elementary process cé — qQ3Q. Here p* =
(E,psind,0,pcos8), c* = (E;%sinacosﬂ,-z’?sinasinﬁ,%cosa); i, 5, L, m, r, s,
a, b are colour indices. Ag, Mg, AQ, A9, Ac and Aq, label helicities

where the T* are Gell-Mann colour matrices; Q e @ are defined in Fig. 2.1, Fs,
G, G; e G; are form factors which will be discussed in Sect. 4, and €Q, €3 are
the diguark polarization vectors.

We can now compute the elementary amplitudes corresponding to the dia-
grams of Fig. 2.1, where the kinematics is defined. Throughout our calculation
we use the naive parton model, neglecting the Fermi motion of the constituents
inside the baryons; we must then assign to quarks, antiquarks, diquarks and antidi-
quarks a running mass mg = (1 -y}m,, my = (1-2)m,, mg =ym,, my =zm,
respectively.

We do not give here all the details of the lengthy calculation; the interested
reader can find them in Ref.{8]. Once we have the full expression for the elementary
amplitudes T(?), we can use them in Egs.(1.3) and (1.2) to obtain the desired
decay amplitudes. We list in Table 2.1 the (c¢) meson states which we shall study,

together with their quantum numbers.
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—6_
Meson 1, gP¢ L § |
Te 15, 0t 0 0
X0 3Py ot+ 1 1
Xel ip 1+t 1 1
Xe2 P, 2+t 1 1
fea 1D, 2=+ 2 0

Table 2.1 Quantum numbers of some charmonium states with C = +1.

We consider as final states only protons, for which we take the SU(6) type

wave functions [2,5):

¢p,A,=:L-§(1’) =—:|-:7_1-;—g- {¢3(3) [ﬁth(ﬂd)ﬂ:F -2V, (uu)d;]

+s(2) [VEVa(uu)ds — Vo(ud)us]  (22)

F [2¢1(2) + #3(=)] S(“d)":{:}

The ¢;(z) (i = 1,2,3) are the diquark momentum density distributions norma-
lized as fol dz ¢i(z) = 1; Vi(ud) stands for a vector (ud) diquark with helicity
A and so on. Fp is the hadronization constant, with the dimension of [mass],
somewhat analogous to the pion decay constant F;. We also introduce a certain

amount of SU(6) violation [9]:

$2(z) = ¢3(z) = V2ov(z) sinQ

(2.3)
2¢1(z) + d3{z) = 3v2 ¢s(z) cos

By varying the value of the angle (! we can give different weights to the vector
and scalar components (for = w/4 we recover the SU(6) wave function).

Using the wave functions (2.2) into the helicity amplitudes (1.3) and (1.2) and
carrying out the a and J integrations we get the decay amplitudes 4,, »,;nm, for

the charmonium states listed in Table 2.1:
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—?—
Aus(n) =% Ty [ dody [ abt? 9, (H1G(R)x (24)
12?::? p23G2y(z —y) o
P
Asz(nd) =0 (2.4)

V2
Asalx) = o [dady [ aki? gy (W)G(RIm, {pk(m Fy)x
1
{—Q:pst +3¢ps = [(5" + E*)G1 - 42yp* E*Gs — 2E°G]
P

2 E? 1
- ﬁlpg Gl} (Co + 3‘02) - 24;§pk923G2y (cc - 302) (25)
+(z - 9){(2* + mi(2 -2 ~y)) x
1
[—95031"3 + 3<p3$ [(p2 + E)@G, - 4a:yp2E2G3] - 69926‘1]
P
P’ 2 i 2
— 123 ;g'E Ga + 24m_§E Gg@gay} ¢

Azz(xe) =0 (2.5")

Aszm() =0 (2.6)
1 [7, - 2, E?
Arem(xa) = ¥3 EdM,:I:l(a) dedy [ dkk "Px:(k)G(k);: pkXx
1
{(z +y — 4zy) [9<pst +3¢s—s [(#* + E*)G1 — 42yp’ E*Gs
P
—2Eng]] + 63 (z — y)ng ~12(1 -~z - y)cpgngy} co
1
+Pk{2(= +y - zy) [99?st +3ps—7 [(#* + E*)G) - (2.6
P
1
—4zyp’E*Gs - 2E2G2]] +3ps(z —y)*Ga + (1 + 5(* +y))x
1
12cpgaGgy} gc:g +(z — ;l,,v){(2;:uz + m:(z -z —y))x

1 .
- ) P
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2
— 12¢, p—gEzgz + 12?202’#’239} Cl}
mp

Asima) = _%d’m(a) / dzdy f dkk? ¢x,(k)G(k)£fx

{pk(3E + 2mc){(== +3) [—999st + 3%% [(?® + E))Gy

E3
—4zyp’ E*G, - 2E2G3] - 6(ng';] + 12;2-G35033y} Teo
P

1
+ pk{(3E + 11m,)(:c + ‘y) [—Qcpst + 33 ? [(;(32 + E? )G]
P

—4zyp* B3Gy — 2E2G3] — B3 GI] {2.7)
+(3E - 10m.) 122 Gmsy} &2 + ph(m. — E){(z + ) x

[ —90sFs + 33 —i' [(p + Ez)Gl — 4zyp3E3G3 - 2E202] GPgGl]
?

E?
+ 12;~nngp23y} de4 + (x — y){(2pz + m§(2 -z —y)) x

[ —9%sFs + 3503 [(P + E*)G, ~ 4zyp’ E’Gs) ~ 65026'1] +

2
_ P p P m
123 ng Gz + 24m§E Gz(pgsy} X

{7(3E + 2m.)c; — 9(E ~ m,) c;]}

1 fx
Asranlx) = 151 Fhhaaa(0) [ dody [ dh? b, (8) x

G(k) = { PR(3E +2m.){ (= + y)x

9¢3F5 + 3¢p3 [(p + ENG, ~ 4zyp* E*G, - 2E2G3]
m3

+ 12G2¢33y} 21co + pk{(2m¢ —~9E + 21E(z +y - 2zy)) X

_ 1 .
YpsFs + 3 —y [(;,!!2 + Ez)Gl - 4a:yp2E’G3 - 2E2G3]
X . ? 4
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+ 6303 (z — ¥)’G1E + [2mc —-9E + %—E(z + y)] X (2.7)
12<P23G'2y} 3c; + pk(E - mc){(z +y) x

[ 1

9sFs +3ps— [(p* + E*)G1 — 4zyp B*G; - 2E’Gz]]

»
+ 12(,023Ggy} 8cs + (z — 1,;){(2;:!2 +mi(2—z—y))x

[ 1
9psFs + 3503;;‘2- [(1-'#2 + Ez)Gl - 4zyp2E2G3]}
- P

2
—12¢s L2526, +125°Gapasy |
my

[21(3E + 2m.) ey + 18(E — m,) Ca]}

Assael12) = 7 T5mpdiea(®) [ dody [ dkk 1, ()60 x (28)
2
12‘923'5;532(;33!(2 —y)e
P
Asepelfa) =0 28)

where M is the z-component of the spin of the decaying particle and

221 1+2z2
“©=Fnt1T=: o
z 14
cl=3,.s[.;.1n\l_; -_1]
251, , 14z
02—22—'—2'[7(32 -—1)1 |1_z —3]
1 1 5 2
c3:%7[z(523—32)l |1i: —§z2+§] (2.9)
2 14+2{ 35, &5
=7 [ (352* — 302* + 3)1 )1_ ~ 3% ta
g = (= y)zm + dzy E?
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with z = d*/[kp(z — y)]; @, = ¢%/4~ is the usual sirong coupling constant. The
different terms coming from the proton and antiproton wave functions, Eq.(2.2),

always appear in Eqs.(2.4-8) in the following combinations:
05 = 3(261(2) + 5(2))(261(0) + $s(»))
¢z = d2(2)b2(y)
p3 = $a(z)ds(y)

P33 = 2(y)$s3(z)
Finally, we introduce the usual [6] non relativistic, small k limit for the char-

(2.10)

monium wave functions (k). We get [8], according to the values of L:

E=0)  a(k)=[FROEHH)

(L=1) (k) =—-3iv2r R’(O)p dk&(k) (2.11)
(L=2) ) =-2 TR0 5L s

where R(0), R'(0), R"(0) are the radial wave functmn and its derivatives, computed
in the origin.

If we use the wave functions (2.11) in the amplitudes (2.4-8) we find, perform-
ing the dk integration

010 . 3\/_ 2 2
Aiy(ne) = £i T R(0)FFal(m? — m3)m? fdzdyx
1
G - ) 2.12
prGale y) (gfsf%d’ k=0 (212)

8
A+x(xo0) = 23\/5 ° R(0)Fiaimy/m? — m;‘;/da:dy X

{{ —OpsFs + 3503 [(2m - mP)G'l 4:cym§(m3 - m:)G's]
P .

2
— 6¢2G1 J4ey(z +y — 2)m? — e"l';ap,c:,(z +y—2)x (2.13)

[(= — y)*m] + deym?] - 24_9’23029 [2(z - y)’m}
My

+ [2(22y -z —y) — (z - ¥)*] mzl}( %d‘)k =0
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Arxm(xy) = ——l—‘:raR'(O) %o m.,/m? — m3 dhx(ﬂ)fdzdy

{{9‘P3Fs +3ps nT; [(2m? — m3)Gy — dzymi(m? — m})Gs] } x

dzy [(3(z + y) — 42y — 2)m? ~ (¢ - y)2 m3)] - 6 goaGg X
{4a:y(3(a: +y)—dey - 2)m? + (x +y — dzy — 2)(2: —y)’ml (2.14)
— 22z —y)* [2(22y — 2 — y)m? + (= — y)'md] }

.- 12tp33(}'gy{ 201 — 2z - y)(2zy — = — y) — (= — y)*] m?

+ 2-= - y)(z - 9)3"‘:}} (E_alg?) k=0

s
Arsm(x2) = —23\/6 *R'(0)Fhal m, m2 ——m’ M 9)fd:cdy

{ { —9¢sFs + 3«,03 [(2m —m? )G1 — dzym2(m? — m,)G’_o,]
my

— 6p2G }43:3;(:: +y—2)m? - 6 (png(z +y-—2)x (2.15)

2
[(z — y)*m3 + 4zym]] +12'—‘P23Gzyx
.‘P

(alomy =y =9l ~ =i} ) ()

Aszn(xa) = —-r’R’(O) o? mey fmd —m3 dig(6) f dzdy

{ {90sFs + 3%  [(2m? - m2)G, — 4aymi(m? — m2)Gs] } x
m3
2 _ oM
dzy(z +y — 2)mi - G;T;spaG‘g(z +y—2)x (2.15")
P

[(z = y)*m} + dzym?] + 12023m2Gay(z + y)(= +y - 2)} X

()
9?93‘1‘ k=
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-12=

2J_5

3
Aze;m(f3) = F 3a';’F;*;,R"(0)an=(m3 ~ m2)2di.(0) f dzdy x
P

1
12¢33Gay(z — y)° (919:‘”) (2.16)

Finally, from the explicit expressions of the decay amplitudes, Eqs.(2.12-16),

we can compute the unpolarized decay rates for the spin J charmonium states:

P = 2 (m? —m})} E

3
8(2x) me N v,

2J + 1 |A139X’|Mlz (2'17)

3 - Charmonium decays into two photons

Each charmonium wave function, Fq.(2.11), still contains one unknown pa-
rameter, R(0), R'(0) or R"(0). In order to fix them we study the decays of n., xo,2
and f; into two photons (the decay of x; into ¥ is forbidden and, indeed, we
find it to be zero). The scheme is the same as in Eqs.(1.2-3) except that now we
do not have any hadronization process and M and T in Eq.(1.3) coincide. The
elementary subprocess is directly ¢¢ — «v and it is described by the diagrams of
Fig.3.1, where we also define the kinematics.

By computing the amplitudes for the elementary process, inserting them into

Eq.(1.2) and integrating over @ and # we find the decay amplitudes A ,, .

Ars(n) = F4VER [ Ak, (G (W),
I;I:'-F('l't:) =0 (3.1)

atxn) = 2 [t 9 [0 (4 - 3t ) #+ @]

Atz(x0) =0 (32)
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€y Ae : . Mih o : T A
< —~ \
-<, Al‘.’ | T2 ’\2 . : 7”A3

Fig. 3.1 Feynman diagrams for the elementary process ¢ — vy. We com-
pute them in the ¢@ center of mass frame, where the mdependent four-vectors
are given by ¢* = (E smacosﬂ,-smasmﬁ, zcosa) and vf = (E;§) with
41 = (Esind,0, Ecos 8), A1 € Az are the helicities of the photons.

() = 2B [ 0,0 {08 |7 (3me v B)

3

- 2@G"(k) [ (2m¢ + E) ¢y + 3(m. — E)c;] E} | (3.3)

Aizmlxa) = :‘5/6_# A(g)'/dkkz'l’x:(k)cl(k){ (gmc-i-E) ‘-"o

4 '
+ (Emc + E) e+ -9-(E - mc)cz}k

+ (_}Emc + E) & + g(mc - E)c;] k+

Absm(f2) = ?4\/-2? A(O)fdkk’qbf,(k)(} (k)2 E
rrm(f2) =0 (3.4)
where G'(k) = (i327v/3a)/(9k?), G" (k) = (i116my/3a)/(9%kE) and the coeflicients
¢’ are defined by:

1+2
l-2
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c1—3[ ln|1+z 1]

¢ = 5[ (33—1)l.n|1+z 3]

- 1+z] 5, 2

LA [ (52° - 32 )1n| §z=+§]

& =9 [ (3524 — 30z +3)1n|1+" —'%éz2+g% (3.5)

with z = 2E/k.
The decay rates are then given in terms of these amplitudes, for unpolarized

spin J states, by:

_ 1 1 .
U= fe@rypzr+1 Mg:h f dQ |4}, 5,;m - (3.6)

In the non relativistic, small k approximation, Eqs.(2.11), we recover the results

of Ref.[6], for states with L = 0,1, that is:

e = 77) = 33 5 RO (3.7)
T(xo — 77) = Ea‘—ll't" (o) (3.8)
I(xz = 77)= i‘gr(Xo - 7Y) (3.9)
while for f, (L = 2) we have:
4 a®
L(fa 7)) = 5 5IR (0)? (3.10)

Eq.(3.7) agrees also with the value given in Ref.[2], where F, = R(0)/(/4rm.).

The known experimental values for the decay rates into two photons are [10]

T(ne = v9) =57+ 26+ 3.7KeV (3.11)
T(xo = 17) =40+ 2.8 KeV (3.12)
Tlxa = 77) =293 £ L.TKeV (3.13)
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By comparing Eqs.(3.7-9) and Eqs.(3.11-13) we get

|R(0)] = 0.63 £ 0.25 (GeV)*/? (3.14)
|RS,,(0)] = 0.35 £ 0.12 (GeV)*/? (3.15)
|R.,,(0)] = 0.61 £ 0.22 (GeV)*/? (3.16)

We have combined quadratically the statistical and systematic errors in Eqs.(3.11-
13) and we have assumed, consistently with our scheme and the zero binding energy
approximation, the mass of the ¢ quark to be one half the corresponding {¢&) meson
mass. The two determinations of R'(0), coming from the xo and x» experimental
data, are, within errors, in agreement with each other. When computing the
X0,1,2 — PP decay rates we shall use the corresponding R'(0) values; for x; we
shall take the average value

|R.,, (0)] = 0.48 £ 0.17 (GeV )*/2, '(3.17)

An alternative way of fixing the values of R(0) and R'(0) would be that of
assuming the total decay rates into hadrons to be given by the decay rates into

two gluons, for which we have [6]

9 o, \ 2
P(ﬂcaXo,z — gg) = '8' r(’?c:XO,: - 77) ("c':') (318)

This procedure leads to results which, within errors, agree with those given in
Eqs.(3.14-16).

4 - Numerical results for 1., xo,1,3 — pp decay rates.

After fixing the parameters which characterize the charmonium wave function,
R(0) and R'(0), we still remain with those related to the diquark form factors and
the hadronic wave functions. The latter have the general form (2.2-3) with

$s = Nyz®1 (1 - z2)”

4.1
¢V — Ngz“’(l —_ :I:)ﬁ3 ( )
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where N,,; are the normalization constants such that fol dz ¢v,s(z) = 1. By
varying o and 8 we get wave functions with different “average” values of z, the
fraction of the mass and the momentum of the proton carried by the diquark:

al‘g + 1
ay2+ P12+ 2

1
<T>svV= Nl,2/ dz a':an,:-l-l(l - z)ﬁt.z = (4.2)
0

We expect the average mass of scalar diquarks to be smaller than the average
mass of vector diquarks: this is supported by the analogy with the ¢§ bound states
(the m mass versus the p mass) and by explicit calculations [11] which indicate
ms < my < 2ms. A similar conclusion, < z >g<< 2 >y <2 < z >3, has been
reached by studying the contribution of diquarks to deep inelastic scattering [12].

We shall use in our computations four different sets of wave functions:

a=1 =3  a=3 fa=1 (4.3a)
ap=1 (=25 a,=25 f;=1 (4.3%)
ay =1 B =1 az = B =1 (4.3¢)
a=1 p=1 az = Ba=1 (4.3d)

These are consistent with the above requirement < z >s<< 2 >v < 2 < z >3,
and are representative of the dependence of the numerical results on « and 8. Such
dependence will turn out to be very weak. We have checked that more elaborate
kinds of wave functions [2,5] do not improve the numerical results.
The mixing angle £, which weighs differently the vector and scalar diquark
components, and the hadronization constant Fiy will be discussed in the sequel.
Let us now consider the diquark form factors. We know what their pointlike

limits (@* — 0) are:
Fs(0)=1 G1(0)=1 G,{0)=1+x G,(0)=0 (4.4)

where x is the vector diquark anomalous magnetic moment. We could then get

some ideas on their large Q? behaviour from perturbative QCD, resolving the
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diquarks in two quarks [4]. Rather than following this procedure which, to be
exact, would require the knowledge of the diquark wave functions in terms of two
quarks, we prefer to fix the large Q? behaviour of the form factors by looking at the
consequences, caused by the presence of diquarks inside nucleons, on deep inelastic
scattering (DIS) [7]. We also assume the diquark strong and electromagnetic form
factors to be the same, up to colour factors.

Diquarks as constituents generate scaling violations in DIS; in order for these

violations to be compatible with the observed ones, we must have, at large Q2 [7]:

G1(Q%) = G2(Q¥) ~ % (4.5)

We then parametrize the diquark form factors as
Q3%
Fg = —=2
T+ @

G1=G3=—-—Q-2!—
Qv +Q*

k;3==0
The values of Q?S,V set the scale for the transition from the small @Q? region,

(4.6)

where diquarks act as elementary objects, to the large Q% one, where they start
being resolved in two quarks. It is generally agreed [1,12] that scalar diquarks are
more pointlike than vector diquarks; accordingly we take Q% = 10(GeV)? and
3, = 2(GeV)?. Small variations of these values do not lead to relevant changes
in the numerical results.
We take for the strong coupling constant the usual expression a,(mf 2)) =
127 /(25 ln(m(’d)/{\z)), A =0.2GeV.
At this point we still have two free parameters, {1 and Fyy. The available

experimental information is the set of decay rates [13]

I'(n. = pp) =121 £ 79KeV (4.7)
T(x1 = pp) =575 £ 11eV (4.8)
[{x2 — pp) = 233%3} £ 48eV (4.9)
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The above results are based on very limited numbers of events and certainly need

further confirmation. In particular the value of the 7. decay rate is surprisingly

large. The only piece of data available on I'(x9 — p3F) is the upper limit

I'(xo — pP) < 12 KeV

obtained by combining the total decay rate [14]

Iy =135 1+33+42MeV

with the branching ratio bound [15]

BR(x, — pp) < 9.0x 1074

(4.10)

(4.11)

(4.12)

We have fixed the value of Fiy, for different values of Q, by fitting the data
on x2, £q.(4.9), which seem to be the most reliable ones [13]. We find, in MeV

0 45°

Fy 67413
Fy T12+14
Fy  58+11
Fy  52+10

30°
62 +12
64 +12
35 11
53 £10

0°
55+ 11
57+ 11
50+ 10
50+ 10

(4.13a)
(4.13%)
(4.13¢)

(4.13d)

Eqs.(4.134,b,c,d) refer, respectively, to the wave functions (4.1) and (4.34,},¢,d).

The above sets of values give (all results are in eV')

Q T(x1 — pp)
45° 2181312
30° 1081123
0° 414
45° 1521189
30° 64134

0° 251329

T'(x0 — PP)

194213503
5381330

46%%8

1769* 1345
43715

46% 2

I(n. — pp)

2*3
0.515:3

0

+4
4—4

0.6%0:¢

(4.14a)
(4.15a)
(4.16a)

(4.14b)
(4.15b)
(4.163)
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45° 95132 238271243 1Hl (4.14¢)
30° 22 685+122 0.2%332 (4.15¢)
0° 22132 48152 0 (4.16¢)
45° 190+ 31053200 0.8+0 (4.14d)
30° 20133 1084+ 1383 02193 (4.15d)
0° 22122 4932 0 (4.16d)

where, again, (a, b, ¢, d) refers respectively to Eqs.(4.34,},c,d).

Eqgs.(4.14-16) have to be compared with Eqs.(4.7-10). First we notice that, as
anticipated, the dependence of the above results on the wave function exponents
o and 3 is very weak. This is to be contrasted to similar computations in the pure
quark model [16,17] where the amplitudes vary by several orders of magnitude
with analogous changes in the wave function. Although we may still tune two
parameters ({2 and Fjv) these are strongly correlated, as demonstrated by the fact
that it is not possible to reproduce an arbitrary pair of decay rates out of the above
(4.7-9). In particular, no choice of } and Fiy leads to the very large experimental
value (4.7) of I'(. — pP) while keeping the values of the three I'(x — pp) within
reasonable bounds. It is not difficult instead to get a good agreement with the
experimental information on the decays xo,1,2 — pp, at the price of a value of
I'(n. — pp) which is much smaller (by a factor ~ 10~*) than the observed one.
We will comment on the 7. problem in the next Section.

We do not pres;ent here any result for the decay rate of f;, due to the lack of
experimental information on I'(f; — vv), from which we could deduce the value

of R"(0). Should such data become available one could easily compute also the

value of I'(f; — pp).
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5 - Comments and conclusions

We have consistently applied a quark-diquark model for the nucleon, pre-
viously introduced [2,5], to several intermediate energy exclusive reactions, in
order to fix all the parameters and to provide a full test of our scheme. We
have considered 7. and xo,12 decays into pp, in a natural modification of the
Brodsky-Farrar-Lepage scheme for exclusive reactions [3], modeling the proton as
a quark-diquark system.

After fixing most of the parameters using both theoretical considerations and
comparison with experimental results, we still remain with two of them which,
however, are strongly correlated. It emerges that our picture can give a good
description for the decays of the xg,1 2 (cZ) meson states. The vector diquark
component of the proton wave function seems to be smaller than the scalar one,
but not necessarily zero. The same picture, however, fails to describe the n, — pp
decay, in that it gives a result which is by a factor ~ 10~* smaller than the
experimental one. The main reason for such a failure is the combination of the
facts that only vector diquarks can contribute to the 5. decay and that the known
experimental value for I'(n. — pp), Eq.(4.7) is surprisingly large, i.e., much larger
than the analogous decay rates for x12 — pp.

Amongst the decays considered here only the x; — pp decay rate has been
computed in the framework of the pure quark model [16]. A value of the branching
ratio in reasonable agreement with the experimental one can be obtained; however,
the normalization of the amplitudes (i.e., the hadronization constant) shows a
very strong dependence on the proton wave function. Moreover, in a pure quark
approach, the amplitudes for the other decays that we discussed either vanish
[2,16], or are ill-defined due to collinear divergences [16].

The 7. decay into pp, strictly forbidden in the pure quark model of Ref.[3], is
one out of many spin effects, most of which cannot be explained [2,4] in pertur-
bative QCD massless quark schemes; the introduction of vector diquarks could,

in principle, offer a solution to these problems and it would be very unfortunate
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if their contribution turned out to be too small. While the observation of the
n. — pp decay cannnot be doubted, the actual decay rate value is based on very
few events and indeed needs a confirmation; if the strong disagreement between
our result and the experimental data should persist, it would be a serious problem
for the quark-diquark model of the nucleon, or, at least, for its application to the
description of exclusive reactions at intermediate energies.

The treatment of non perturbative effects by the introduction of diquarks in
an overall QCD perturbative scheme might be too drastic or simplistic; higher
order corrections might still be much too large. Another possible source of uncer-
tainties is the neglect, throughout all our calculations, of the scalar-vector diquark
transition, which would introduce one extra coupling (to be added to Egs.(2.1)),
~ €uvpe @ QP (€*)°. We have checked that such a coupling could increase the
value of ['(7. — pj), but not by such a large factor as needed [18].

Let us add that the pjp channel is not the only “weird” decay of the 7n.; its
decays into vector particles, 5. — pp, KK*,$¢, are in fact forbidden in the BFL
scheme and one still gets a zero result for all amplitudes even when taking into
account quark mass effects [19]. All these decays have been observed experimen-
tally. It might be that the 5, decays receive a strong, leading contribution from
other mechanisms not taken into account either in the BFL scheme or in its quark-
diquark generalization (glueballs?).

Waiting for clarification of the 7. puzzle, there are still some other tests of
our model left, since all parameters have riow been fixed; of particular interest is

the computation of the decay rate I'(J/¢¥ — yp5) which is in progress {2,20].
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