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Abstract

It is summarized here a geometrical treatment on a flat tangent space local to a general-
ized complex, quaternionic, and octonionic space-time.
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I. Introduction

It was shown recently [6] that it is possible to develop a non-Riemannian manifold over each
of the algebras stated at the Hurwitz theorem, namely: the real (R) algebra, the complex
(C) algebra, the quaternionic (Q) algebra, and the octonionic (O) or Cayley algebra [1]. An
important application of this theory is that we can geometrically construct a unified field
theory including the gravitation, the electromagnetism, and the Yang-Mills fields, which are
usually treated in gauge field theories on the (flat) Minkowski space-time. Therefore, the
General Relativity is a theory developed on'a Riemannian manifold over the real algebra [2],
the Einstein-Schroedinger non-symmetric theory is developed over the complex algebra [3]
[4), and a matrix (Yang-Mills) theory [5], for the case of dimension n = 2, can be reinterpreted
as the quaternions algebra. The extension of the theory to include (split) octonions algebra
was developed by S. Marques and C.G. Oliveira in ref. [6]. They also developed a tentative
theory on the local tangent space [7], which was later modified by S. Marques [8] to develop
a generalized Dirac equation on this extended manifold!.

The present work exposes, in a compact form, the geometrical properties of a tangent
space local to the non-Riemannian manifold connected to each of the algebras: R, C, Q,
and O, reffered to above. With this objective, the main geometrical properties are organized
on a table, so that we can compare the developing generalization of the manifold when we
go from the R-algebra to the O-algebra. This form of presentation will avoid a long and
repetitive reading. The repetition of symbols can be noticed throughout to keep a mnemonic
similarity when we go from the rea.l.theory to the octonionic (Cayley) theory, even though
it implicates calculations specific to each of them.

II. The Hurwitz Theorem and the Cayley Algebra

A composition algebra over the real numbers is defined as an algebra A with the identity
element and with a non-degenerated quadratic form? Q defined over A such that @ permits -

11t will not be described here each of these four theories, which are thoroughly studied in refs. [6], [7],
and [8] )

2A quadratic form is non-degenerated if the scalar product associated to it is non-degenerated, i.e., if
& # 0, there exists y such that (2,y) # 0.
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composition, i.e., for each element z,y of A,
Qlzy) = Q(=)QW) Q(az) =a’Q(2) , (2.1)
where a is a real number. We can associate to this quadratic form a scalar product:
(2,3) = 51Q(=+3) - Q) ~ QG , (22)
which is a symmetrical non-degenerated bili_near form. The norm of a vector z is defined as:
N(z)=Q(z) , ie, N(x)=(xx). (2.3)

The Hurwitz theorem states that: “the only composition algebras on the real numbers,
except isomorfisms, are the algebra of real numbers R (dim. n = 1), the algebra of complex
numbers C (dim. n = 2), the algebra of quaternions Q (dim. n = 4), and the algebra
of octonions O (dim. n = 8). From these the quaternions are non-commutatives and the
octonions are non-commutatives and non-associatives”. The composition algebra is said to
be a division algebra if the quadratic form Q is anisotropic, i.e., if Q(z) = 0), implies z = 0.
If not, the algebra is called “split”.

A. The Algebra of Quaternions

The quaternion algebra Q has four generators {eo,e;,i = 1,2,3}, where e, is the identity
element of the algebra. They satisfy the relation,

eie; = €inty — 65,-;0 . (2.4)
Every element z of Q can be written in terms of the generators as:
z = Toto + Titi , T =2oep—2;¢; , 1=1,2,3 , (2.5)
where ¥ is the quaternionic conjugate of z. Therefore, the squared norm of z is given by:
2% = Zz = (2o’ + 2°)1 , (2.6)

where 1 = ey,
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A possible realization of the quaterionic algebra that will be used in this work, is through
the Pauli matrices:

w; =1i"tg; , +=1,2,3 ,
wp=0g=1 . (2.7)

where o;,1 = 1,2,3, are the Pauli matrices and w;, and wy, are the (matrix) generators of a
quaternion algebra. Therefore, the “numbers” {wyg,w;, 1+ 1,2,3}, satisfy a product of the
kind (2.4) above.

B. The Cayley Algebra. Reaﬁzation via Zorn matrices

The octonions algebra has eight dimensions and its base-vectors {eo, €, 1 = 1,..., T}, satisfy
the product law:

ot = Ei€g = €{ ,
€8 = €i4Ch — 6.-,-eo 3 (2.8)

€% is now an object completely skew-symmetric with seven non-zero matrix elements: ¢;23,
€516, €824, €435y €471, €672, €a73- This algebra is also called Cayley algebra [1]. It is neither asso-
ciative, nor commutative, but belongs to the class of alternative algebras with the property
that, for any three octonions z, y, z, their associator is given by:

{3, ¥, z} = (zy)y - 2’(3"“") . (2'9)

It changes sign when any two of its arguments change position. Also, z, y, z are called
Cayley numbers.

Any octonion = can be written in terms of the base vectors as:
z=2zpep+ 2i€i, E==apep—2ie; , 4=1,..T7, (2.10)
where Z is the octonionic conjugate of z. The squared norm of z is then defined as:
Q(z) = 27 =%z = (2o° + 2,")1 , (2.11)

where 1 = ep is the identity element of the algebra.
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The Cayley algebra with the base given in (2.8), belongs to the class of division algebras

(real base), but it also can be presented as an split-algebra if we use a new base in the
complex domain. This is given as:

uo = }(eo +ier) , wi =i+ eiya)

(2.12)
uh = d(eg —ter) , uf=1(e;i—des4s)
1 =1,2,3.
From this definition follows the multiplication table:
USUS = Eplr Uil = €Uy
wu] = —byu , uju; = §ug ,
ulug =0 , wup =0 ,
UgU! = ug , uoly = %; , Uplo =gty =0 , (2-13)
W=y, uy =% ,
uito = U , Uity = U;
worl =0 , ug: =0 ,

It is of our interest & convenient realization for the elements of the base (uo,u;, u3, u?),

through the Pauli matrices. This is possible by means of the following identification:

_{o0o o0 e | wo O
w=(aa) w=(%1)

$i=1,2,3 (2.14)
{00 . 0 —w; N
we(ae) - (0 )

wy and w; were given in (2.7). Therefore, for any octonion A, we have:

y

a —
A=au3+buo+=.-u$+ym=( =“)

2.15
° (2.15)
The conjugate of A is defined by:
. . b 7
A = bug + aug — ziu; — Yo = - (2.16)
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The norm of A is then given by:
AR =AA=(ab+Z4)1 , (2.17)

where 1, the identity element of the algebra, is now written as: 1 = l.uj + 1l.up. The
“matrices” above are called “Zorn matrices” or “vectorial matrices” ref. [1]. The product of
any two of these matrices is defined by:

uB=|¢ ~F c ¥\ ac—Z.9 —(ef + dZ + § x ¥) . (2.18)
¥y b v d e+ +Exd bd - y.i8
which guarantees the non-associativity of the product. The multiplication table for the u’s

is reproduced in this Zorn-matrix notation. Some other properties for the octonions in this
Zorn notation are:

Al=1A=A, AB=F4 ,

A+A=Tr(AN1 , Tr(AB)=Tr(BA) ,
where the trace (7'r) operation is taken on the Zorn matrices. From (2.19), and using the
definition of an associator given in (2.9), we have that:

(2.19)

Tr[(AB)C] = Tr[A(BC)) = Tr[ABC] , (2.20)
and that the T'r operation on a product of Zorn matrices follows the cyclic order of the
factors.

In general, the complex (split) Cayley algebra contains seven Euclidean (vectorial) sub-
algebras, as well as seven quaternion sub-algebras. This property follows from the multi-
plication rules of the complex (split) base given in (2.13) and from the definition (2.12).
Finally, observe that we always have been using A = Z(A), the Zorn matrix of the octonion
A, as the Zorn algebra is isomorphic to the algebra of the split octonions.

III. Internal Transformations for Quaternions and Oc-

tonions

When we have a complex unimodular matrix A,

(=5
A"(‘r 5)
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then its inverse is defined as:

s[4 2)

The conjugation operation of quaternions and octonions is equivalent to the inversion of &
unimodular matrix.

A. Quaternionic Transformations

Let us take U as the quaternionic transformation matrix, or “Q-transformations”,
U = mowp + maw; (3.1)
which is also a transformation matrix of the SU(2) group, i.e., it satisfies the condition
U'=0l |, and detU=1, (3.2)

where Ut = UT* is the Hermitian conjugate of U. As U is a unimodular matrix, we also
have that:

Ut=U =mewo —maw; , (3.3)

where U is the quaternionic conjugate of U. Thus, the following expression is valid:
Tu=00=U"0=0U0U"'=(md+mHwy=1 , (3.4)

where _
mi+md=detlU=1. - (3.5)

We must have for the general form for U :
U=eld -l ' (3.8)

where X = (A1, Az, A3) are real parameters.

We define a Q-transformation of a quaternion X by:
K'=UKU . (3.7
If K is written in terms of components as:

K = ogwo + ouw; (3.8)
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K’ is given in terms of components, using (3.7), as:
K' = (moagmo + meaymy + macgmy, — mypamo)wo

+[moapmo — moagm, + myaeme + mpasm,
+ epip(mparmo — mooamy) — ginenpmio;myw, . (3.9)

The symmetry group of this transformation is the SU(2) group, which is homomorphic to
the rotation group, O;. This can be expressed through the relation:

Uw;U™! = Rw; i,5,=1,2,3, (3.10)

where H;; is the transformation matrix for the O group. In terms of components this can
be written as:

m3bip + mimy — 2€5,mem; + EpEmym; = Ry . (3.11)

For the local Q-transformations, which are used in the space-time manifold connected to
an internal quaternionic space, we must have

U = U(z) = mo(z)wo + mi(z)w; , (3.12)

and

U(z) = e~ Me}d | (3.13)

where now, A(z) = (Ai(2), As(2), As(2)) are real functions. Also, the coefficents of K in (3.8)
are functions of space-time coordinates. :

B. Octonionic Transformations

When we consider octonions, we may define an octonionic transformation law, or O-transformation:

by means of the octonion U, in this case, split-O: split:
U = poug + pivs + qovio + qivsi, 1=1,2,3, (3‘14)
where py, i, g0, ¢, §=1,2,8, are real coefficients. The conjugate of U is then given by:

U = goug — piuf + potso — i (3.15)
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Comparing with the situation for the quaternions, we can define:

U=0. (3.16)
Actually,
UU=UU=UU=UU"? = (pogo + pig)1 , (3.17)
which will be equal to 1 if
Popo+pg=1. (3.18)
In this case, we have for U, '
U = -7 - (3.19)

where § = (61, 82,63) and 4 = (1,42,7s) are real parameters.

For an extension of the case valid for quaternions, the O-transformations of an octonion

K is defined by:
K' = Z(UK)U~* + U(KU)] (3.20)

We can show easily that
(UK)U™? = U(KU™Y) , (3.21)
which simplifies the relation (3.21) above to

K'= UKU"! . (3.22)

If K is written in terms of components by

K = poug + piuf + motio + mini = (3.23)
we have, from (3.22),
K' = (popogo + PoPrdr + Prkodn — Priago)iiy + (Qorogo + GoRaPa + GuPoPs — rPEPo )0

+[PoppPo — PopoPy + PpioPo + Pprapr + utp(PoRigh — GoRa®) — EijnempPipi iy,

+ [gompg0 — gokogy + GrPoPk + quPrGp T+ ckip(PrpiGo — Popapr) — Ciinertp@inipiluy, . (3.24)

We are going to define a similar relation to (3.10), for O-transformations, which is:

U(u] + 11.‘)’[]”‘1 = ki,-'u} - Liu; 5,7 =1,2,3 . (3.25)
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In terms of components this is:

Pibip + Pipp — €itpti(Po + o) + CijncutpPin = kip

) (3.26)
qabip + @ity — €itpPi(Po + Qo) + €inentpqipr = lip

with the additional condition

Pogi —Pido =0 . (3.27)
From the relations (3.26), we can see clearly that in the limit gg — py , ¢ — p: , the
O-transformations, through U, will be equivalent to the Q-transformations, through U.
Therefore, the O-transformations are homomorphics to the rotation group Os and so, they

must be SU(2)-like (in our case). Besides, we observe a certain symmetry with regard to

the positioning of the components terms, in expressions (3.26).

In the case of local O-transformations, which we use in the octonionic space-time mani-
fold, we must have:

K = K(z) = po()ug + pi(z)u + mo(z)uo + mi(2)w; , (3-28)
U = U(z) = po(z)ug + pi(z)u: + qo(z)uo + pi(@)us (3.29)

and
U(z) = e S@& -2 (3.30)

where §(z) and (z) are now functions of the space-time coordinates.

IV. The Tangent Space

The definition of a tangent space local to the Riemannian or non-Riemannian space-time
manifold starts with the correspondence principle. For the General Relativity it states that
at each point of the curved (Riemannian) space-time, there exists a local tangent space, with
the structure of a flat space-time, where the metric is given by the Minkowiski tensor, 7,;.
The line element on the curved space-time is then, locally equivalent to the one on the flat
spacetime. This principle can be extended to non-Riemannian space-time manifolds, as for
example, the complex non-Riemannian manifold of the Einstein-Schroedinger theory (ref.
[3]) used here. One way of doing this, is to define complex vierbeins This has the advantage
of keeping the metric on the tangent space as the Minkowski tensor.
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The quaternionic theory is the next one permited by the Hurwitz theorem. It stems from
a more general matrix theory (ref. [5]), which includes the n-dimensional Yang-Mills field.
This quaternionic theory corresponds to the bidimensional matrix theory, with realization
via Pauli matrices. A reasoning similar to the complex theory was used when we define
quaternionic vierbeins on the non-Riemannian manifold.

The octonionic theory is described through the vectorial Zorn matrices and also, with
realization through the Pauli matrices. This was done due the obvious possibility to reobtain
the quaternionic theory in a convenient limit, which makes it physically reasonable. It is

defined there, octonionic vierbeins on the octonionic non-Riemannian manifold.

Table 1 displays the geometrical objects obtained in the development of a geometrical
theory for the tangent space local to & non-Riemannian space-time manifold, for each of the
algebras stated in the theorem of Hurwitz. That means a space-time manifold to which is
attached an internal space, namely: the space of the real numbers (dimension n = 1), the
space of the complex numbers (dimensjon n = 2}, the space of the quaternions (dimension
n = 4), or the space of the (split) octonions (dimension n = 8). This is possible through the
definitions of corresponding generalized vierbeins refferenced above. The internal space has
its origin on a spinorial space defined through the wave functions of a particle of mass m in
the presence of gravitation, electromagnetism, and Yang-Mills fields.

The transformation laws that rule each of these theories are analyzed in the next section.
They will permit obtaining covariant derivatives which automatically define the connections,
namely: space-time connections and internal connections. The corresponding curvatures are
obtained in the standard way through the difference: Als — Alg.r where A* is a space-time
vector with internal indices (R, C, Q, and O indices).

With the geometrical objects defined on the extended space-time manifold, it is then
possible to determine a Minimal Action Principle, which will permit the obtaining of field
equations (or dynamical equations) for the theory.
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V. An Analysis of the Transformation Law in a Tan-
gent Space Associated to the Complex, Quater-
nionic, and Octonionic spaces

A. The Complex-Theory

The transformation law on a tangent space local to the Riemannian space-time manifold
follows the group SL(2C). Therefore, for the case of a complex non-Riemannian tangent
space treated here, there is also an internal (c;amplex) part for the transformation law. Taking
the vierbein ef(z), it will transform on the tangent space as,

2(2) = Loy(2)ek(z) (5.1)
where L% (z) are the local Lorentzian rotational matrices, which have the property |
LTaL=1q . (5.2)
The vierbein el(2) is a complex object, e} = ¢}, + e}, Thus,

% —
e#—eua

— e}, (5.3)

is the conjugate of e2. Therefore, e} is an object with indices on the “internal” C-space.

The transformation law for an object of this internal space, K, is

K'=UQ1)K , (5.4) —
where U(1) stands for a unitary 1 x 1 (local) transformation matrix, U(1) = ¢*(*), and

X =U1)K , (5.5)

where U(1) = U~(1) = e~¥=). A more general transformation law for the complex vierbeins
should be then:
ep(z) = L%(z)(U(1)en(=)) »
6 (z) = ¢(z) = LY(=)(Ue"(2)) - (5.6)
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The covariant derivative for these vierbeins on the tangent space are now given by:

e = €+ Ate +Cel

ey =, + AN — Cue’s

(5.7)
where A,*, is the tangent connection related to the Minkowskian space and C, is the “internal
connection”. Their transformation laws are, respectively,

A=LAL*—L,L™? (space — time transformations) ,

C.=UQ)C,U1)-U, (1)U} (1) (internal transformations) . (5.8)

When we consider the particular case of the infinitesimal U(1) = 1 + i, the internal con-
nection C, transforms in first order, as

C.=C,+ip , (5.9)

which is the same as a gauge transformation law for an electromagnetic potential. Aninternal
curvature can be obtained:

Po=Cup—Cyp , (5.10)
which can also be considered to correspond to the Maxwell electromagnetic tensor.

Field equations for the complex theory on the non-Riemannian complex manifold are

obtained in ref. [8]. The corresponding ones for the complex vierbeins are presented in

Table II.

B. The Quaternionic-Theory

The transformation law for the vectors on the tangent space is defined, as usual, through
the Lorentzian rotational matrices. Therefore, a more general transformation law for a 2-
dimentional matrix tangent vectors, with realization via Pauli matrices, shall be in the case
of the vierbein E3(z):

Er(z) = L%(2)(U2)E(=)U1(2)) . (5.11)

The internal transformation matrix U(2) is unitary and unimodular, and is then reinterpreted
through the “quaternionic transformation matrix”, U, defined above.
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The internal covariant derivative, in this situation, is now called quaternionic covariant

derivative or Q-derivative. For example, the Q-derivative of a quaternion K(z} is defined
as:

Kyj.=K,+[l,,K], (5.12)

where

-

F.=B,4v (5.13)
is called the “quaternionic connection”, or Q-connection, and it transforms as
L, =Ur,u'-v,u? (5.14)

under the Q-transformations.

The operation of (total) covariant differentiation for the vierbein Ef on the quaternionic
tangent space, is defined as:

EE,, =Es, — QO E2 + AME: +[T,,ES , (5.15)

where (¥, and A%, are the curved and tangent space connections, respectively.

A quaternionic curvature can be obtained in the standard way, performing the difference:
Kjw — Kjpu = PuK - KP,, , (5.16)

where |
Py =Typ — Typ — [Ty I} (5.17)

is the internal quaternionic curvature.

C. The Octonionic-Theory
The general transformation law for the octonionic vierbein H3(z) is defined as:
H}(z) = L%(2)(UHL(2)U™) . {(5.18)

The “internal transformation” in this expression, corresponding to the part (UHj(z)U™?),

is the “octonionic transformation”, or O-transformation, defined in section III (above).
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The octonionic covariant derivative, or O-derivative, of an octonion K, for example, is
defined by:
K,=K,+[l'.,K] , (5.19)

where I, is the “octonionic connection”, or O-connection, such that X, transforms like an
octonion under O-transformations3:

K'=UKU™ ,
Kj, = I_JK",,U-l . (5.20)
and
r,=ur,u'-uv,u (5.21)

The octonions U(z), define local-octonionic transformations that are homomorphic to the
rotational group Os.

It is imposed in this theory, that I', is a trace-free Zorn matrix of the Yang-Mills type
(Pauli matrices representation):

= E’ . Ly ,03 = 2 % 2 zero matrix. (5.22)
—K,‘.w 03

The reason for this choice is that we can get an exact doubling of the quaternionic theory
with realization vie Pauli matrices (Yang-Mills theory), in the limit K, — I, in this split-O
theory.

The total covariant derivative for the octonionic vierbein H;(z) can be written as:

H, =H, -0° H; + A;,H: +[L,,H3) (5.23)

+

Again, an internal octonionic curvature can be obtained in the standard way, when we
perform the difference:

Kjpw — Kjp =P K - KP,, +{I,,T,,K} , (5.24)

SNote that expressions (5.20) and (5.21) have no parenteses, according to (3.22)
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where:

Pu=C-Tu- [rm rv] (5'25)

is the internal octonionic curvature. In (4.25), the expression {I',,I',, K} is the associator
of the fields I, I',, and K.

The expressions corresponding to the field equations obtained through a Minimal Varna-
tional Principle, for the quaternionic and the octonionic vierbeins, are obtained in ref. [8],
and presented in Table II.

VI. Some Final Comments

It is important to mention, at this point, that we could have developed an octonionic geomet-
rical theory on the real-base defined in (2.8). However, it would not be possible to recover
the quaternionic (Yang-Mills) theory in a so obvious limit, as was done for the split-O theory.
Also, a real-O theory would not be of Yang-Mills type, since the next group permited is the
SU(3), which would permit an internal (matrix) space with dimension = 3* = 9. The di-
mension of the real-O internal space is dimension = 3 — 1 = 8. Therefore, this realO theory
would correspond to the introduction of a different field (say, internal-octonionic space) on
the space-time manifold, which we could not currently interpret.
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