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Abstract

We give a proof of the exponential uniform decay of magneto-elasticity waves in
a compact medium.

1 The Proof

One interesting questions in the magneto-elasticity properties of an isotropic (incompress-
ible) medium vibrations interacting with an external magnetic is to show that the energy
of the total system should decay with an exponential uniform bound as time goes to
infinity ([1]).

We aim at this note to give a rigorous proof of this exponential bound for a model of
imaginary medium electric conductivity. (See appendix A for a complementary analysis
on this problem).

The governing differential equations for the electric-magnetic medium displacement
vector U = (U1, U2, 0) ≡ ~U(x, t) depending on the time variable t ∈ [0,∞) with x ∈ Ω

and the intrinsic two-dimensional magnetic field ~h(x, t) = (h1, h2, 0) are given by

∂2~U(x, t)

∂2t
= ∆~U(x, t) + ([~∇× ~h](x, t)× ~B) (1)

β
∂~h(x, t)

∂t
= ∆~h(x, t) + β

(
~∇×

[
∂U

∂t
(x, t)× ~B

])
. (2)

Here ~B = (B, 0, 0) is a constant vector external magnetic field and β the (constant)
medium electric conductivity.

Additionally, one has the initial conditions

~U(0, x) = ~U0(x); ~Ut(0, x) = ~U1(x), ~h(0, x) = h0(x) (3)
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and the (physical) Dirichlet-type boundary conditions with ~n(x) being the normal of the
boundary of the medium Ω ([2])

~U(~x, t)|Ω = 0; (~n× (~∇× ~h))(~x, t)|Ω = 0 (4)

Let us consider the contraction semi-group defined by the following essentially self-
adjoint operators in the ĤΩ-energy space.

ĤΩ = {(~U, ~π,~h) ∈ (L2(Ω))3 | (∇~U,∇~U)L2(Ω) + (~π, ~π)L2(Ω) + (~h,~h)L2(Ω) < ∞}.

Namely

L0 =

 0 i 0
i∆ 0 0
0 0 −∆

 (5)

and

V =

0 0 0

0 0 [~∇× ( )]× ~B

0 −(~∇× [( )× ~B]) 0

 . (6)

We, thus, have the contractive C0-semigroup acting on ĤΩ (see appendix A for the
technical proof details)

Tt(~U, ~π,~h) = exp(t(+iL0 − V ))(~U, ~π,~h)(0). (7)

It is worth call the reader attention that we have proved the essential self-adjointness of
the operator V by using explicitly the boundary-conditions on the explicitly relationships
below

([~∇× (~h)]× ~B) = (B, B(∂1h2 − ∂2h1)) (8)

([~∇× [~h×B)) = (−B∂2π
2, B∂1π

2, 0))) (9)

By standard theorems on Contraction Semi Group theory ([8]), on has that the left-
hand side of eq.(7) satisfies the magneto-elasticity equations in the strong sense with
β = i =

√
−1, a pure imaginary electric conductivity medium and physically meaning

that the medium has “electromagnetic dissipation” and in the context that the initial-
values belong to the sub-space (H2(Ω) ∩H1

0 (Ω))2 ⊕ (L2(Ω))2 ⊕ (L2(Ω))2 ⊂ ĤΩ.
Let us note that eq.(7) still produces a weak-integral solution on the full Hilbert

space ĤΩ = (H1
0 (Ω))2 ⊕ (L2(Ω))2 ⊕ (L2(Ω))2, result suitable when one has initial random

conditions sampled on L2(Ω) by the Minlos theorem.

Thus, for any (~U0, ~π0,~h0) ∈ ĤΩ we have the following energy estimate

||(~U, ∂t
~U,~h)||H̃Ω

≡
∫

Ω

dx(|∇~U |2 + |∂t
~U |2 + |~h|2)(x, t)

≤ ||(exp(t(iL0 − V )))(~U(0), ∂t
~U(0),~h(0))||H̃Ω

≤
∥∥∥∥S − lim

n→∞

{[
exp

(
it

n
L0

)
exp

(
− t

n
V

)]n

(~U0, ~U1,~h0)

}∥∥∥∥
H̃Ω

≤ exp(−tω(V ))||~U0, ∂t
~U(0),~h(0)||H̃Ω

(10)
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where ω(V ) is the infimum of the spectrum of the self-adjoint operator V on the space
Ĥ.

In order to determine the spectrum of the self-adjoint operator V , which is a discret set
since Ω is a compact region of R2, we consider the associated V -eigenfunctions problem

[∇× (~hn)]× ~B = λn~πn (11)

−∇× [(~πn)× ~B] = λn
~hn (12)

which, by its turn, leads to the usual spectral problem for the Laplacean with the usual
Dirichlet boundary conditions on Ω

∆πn
2 = −

(
λ2

n

B

)
πn

2 (13)

πn
2 (x)|∂Ω = 0. (14)

As a consequence of equations (12) and (13), one finally gets the exponential bound
for the total magneto-elastic energy eq.(10)

||(~U, ∂t
~U,~h)||H̃Ω

(t) ≤ exp
(
−t

√
Bλ0(Ω)

)
× ||(~U0, ∂t

~U(0),~h(0)||H̃Ω
(15)

where λ0(Ω) = inf{spec(−∆)} em H2(Ω) ∩H1
0 (Ω).
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Appendix A

Exponential stability in two-dimensional magneto-elastic:

Another proof

In this complementary technical appendix on the exponential decay of the Magneto-
Elastic energy associated to the (imaginary electric medium conductivity) magneto-elastic
wave U

π
h

 (t) = exp{it(+L0 + iV )}

U
π
h

 (0) (A-1)

with the essential self-adjointness operators on the Hilbert Energy space H̃1(Ω)

L0 =

 0 +i 0
+i∆ 0 0

0 0 ∆

 (A-2)

and

iV =

0 0 0

0 0 i[~∇× ( )× ~B

0 i~∇× [( )× ~B] 0

 , (A-3)

we have used the fact that the operator −V + iL0 is the generator of a contraction semi
group on this energy Hilbert space H̃1(Ω) = (H1(Ω))3 ⊕ (L2(Ω))3 ⊕ (L2(Ω))3 in order to
write eq.(A-1) in a mathematically rigorous way.

Let us give a proof of this mathematical result by means of a direct application of the
Hille-Yosida theorem ([2]) to the operator (−V + iL0).

Firstly, the domain of (−V + iL0) is everywhere dense on H̃1(Ω) as a consequence of
the self-adjointeness of the operators V and L0 on H̃1(Ω).

Secondly, the existence of a solution for the elliptic problem

(−V + iL0)x = αy (A-4)

for x ∈ D(L0) ⊂ D(V ) and every y ∈ H̃2(Ω) with α > 0 is a standard result even if Ω has
a non-trivial topology (holes inside!), i.e.: Ω is a multiply-connected planar region ([2]).

The unicity of the solution x is a straightforward consequence of the fact the spectrum
{λn} of the self-adjoint operator V coincides with the positive Laplacean ωn(−∆), i.e.:
λ2

n/B = ωn(−∆). As a consequence, the solution of the equation

(−V + iL0)x = 0 (A-5)

leads to the relation below due to the self-adjointness of the operators V and L0 on H̃1(Ω)

〈V x, x〉H̃1(Ω) = 〈V x, x〉H̃1(Ω) = i〈L0x, x〉H̃1(Ω) = i〈L0x, x〉H̃1(Ω) (A-6)
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from which we conclude that
〈V x, x〉H̃1(Ω) = 0 (A-7)

〈L0x, x〉H̃1(Ω) = 0 (A-8)

or, equivalently
x ∈ Ker{V } ∩Ker{L0} (A-9)

which is zero if Ω is simply connected planar domain as supposed in the text.
Finally, for any x > 0, we have that

||(α1− (−V + iL0))
−1||H̃1(Ω) ≤

1

α
(A-10)

since for every z ∈ Dom(L0) ⊂ Dom(V )

α2||z||2
H̃1(Ω)

≤ ||((α1− (−V + iL0))z||2H̃1(Ω)

= α2||z||2
H̃1(Ω)

+ ||L0z||2H̃1(Ω)

+ ||V z||2
H̃1(Ω)

+ 2α(z, V z)H̃1(Ω). (A-11)

Note that we have used the fact that V is positive operator on H̃1(Ω).
As a consequence of the above exposed results we have that −V + iL0 is a generator

of a contractive semi-group on the space (1−PKer(V )∩Ker(L0))H̃
1(Ω), where PKer(V )∩Ker(L0)

is the orthogonal projection on the Kernel sub-spaces of the self-adjoint operators V and
L0.

As a last final remark to be made in this appendix A, let us call the physicist oriented
reader attention for the following (somewhat formal) abstract Lemmas, alternatives to
the Banach space methods used in ref. [2].

Lemma 1. Suppose that the matrix-valued operator with self-adjoint operators entries
on suitable Hilbert Spaces H1, H2

L0 =

 0 A 0
B 0 0
0 0 C

 . (A-12)

Then, it will be a self-adjoint on the Hilbert Space H̃ = H1 ⊕ H1 ⊕ H2 with an inner
product given by (D is a positive self-adjoint operator on H1)

〈(U, π, h); (U ′, π′, h′)〉H̃ = (D∗DU, U ′)H1 + (π, π)H1 + (h, h)H2 (A-13)

if we have the constraints below for the operators on the Hilbert components spaces:

C = C∗ on H2

A∗D∗D = B on H1 (A-14)

Range(A) ⊂ Dom(D)
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Proof: Let us consider the inner product on H̃〈
L0

U
π
h

 ; (U ′, π′, h′

〉
H̃

= (DAπ,DU ′)H1 + (BU, π′)H1 + (Ch, h′)H2 (A-15)

and

〈(U, π, h); L0(U
′, π′, h′)〉H̃ = (DU, DAπ′)H1 + (π, BU ′)H1 + (h,Ch′)H2 . (A-16)

On basis of eq.(A-15) and eq.(A-16) one can see that L0 is a closed symmetric operator-
Besides, if there is a (U0, π0, h0) ∈ H̃ such that for every (U, π, h) we have the orthogonality
relation

〈(U0, π0, h0); (i + L0)(U, π, h)〉H̃ = 0. (A-17)

Then
〈(U0, π0, h0); (Aπ, +iU,BU + iπ, Ch + ih)〉H̃ = 0 (A-18)

As a result
(D∗DU0, (Aπ + iU))H1 = 0

(π0, BU + iπ)H1 = (h0, Ch + ih)H2 = 0. (A-19)

We thus have by self-adjointness of the operators A, B and C that U0 = π0 = h0 = 0.
As a consequence the deficiencies indices of L0 vanishe. What formally concludes the
self-adjointness of L0 on that vectors of H̃1 such that (the domain of L0 since L0 is a
closed symmetric operator):

〈L0(U, π, h), (U, π, h)〉H̃ < ∞ (A-20)

Lemma 2. Let U be the matrix valued operator acting on H̃ given by

V =

0 0 0
0 0 V1

0 V2 0

 . (A-21)

Then V is self-adjoint on H̃ if and only if on H2 we have the constraint relationship
below between the adjoints of the closable symmetric operator V1 and V2

V ∗
1 = V2. (A-22)

Proof: One can use similar arguments of the Lemma 1′ proof to arrive at such result.
Let us now take into account the case of the spectrum of L0 contained on the negative

real line (−∞, 0] and that one associated with V is by its turn, contained only on the
upper bounded negative infinite interval (−∞,−c] (with c > 0), then we have by a
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straightforward application of the Trotter-Kato formulae for t ∈ [0,∞) the following
estimate on the norm of semi-group evolution operator-generated by L0 + V0

||et(L0+V )|| ≤ lim
n
||e

t
n

L0e
t
n

V ||n

≤ lim
n
||e

t
n

V ||n ≤ ||etV || ≤ e−tc (A-23)

In the following Magneto-elastic wave problem with real conductivity β > 0,

∂t

U
π
h

 (t) =

 0 −1 0
−∆ 0 0
0 0 1

β
∆

U
π
h

 (t)

×

0 0 0

0 0 − ~B × [~∇× ( )]

0 −∇× [( )× ~B] 0

U
π
h

 (t) (A-24)

One can see that it satisfies the conditions of the above written Lemmas with the operator
D = ∇ and with the Hilbert space

H̃ = (L2(Ω))3 ⊕ (L2(Ω))3 ⊕ (L2(Ω))3

and c = inf spec(−∆) an H2(Ω) ∩ H1
0 (Ω) (see the section 5) and, thus, leading to the

expected total energy exponential decay showed in section 5.
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