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Abstract: The specific heat of the (non ionized) Hydrogen atom cannot be calculated
within Boltzmann-Gibbs Statistical Mechanics essentially because its partition function
diverges. We show that the generalized formalism recently introduced by one of us
overcomes this difficulty for ¢ < 1 (the index g characterizes the statistics;

Boltzmann-Gibbs corresponds to ¢=1).
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Any good Quantum Mechanics introductory textbook contains the exact
solution of five systems, namely, the (nonrelativistic) free particle, the har-
monic oscillator, the spin 1/2 {in the presence of an external magnetic field),
the rigid rotator and the (non ionized) Hydrogen atom. The first four are also
present in any good Statistical Mechanics textbook (for the oblate/prolate
rigid rotator see [1]) but never the Hydrogen atom! Worse than that, in
most of them, not a single word is dedicated to this remarkable absence. The
reason is that, within Boltzmann-Gibbs (BG) thermostatistics, the partition
function diverges; more than that, there is no prescription for attributing, as
a function of the temperature, finite values to an equilibrium quantity such as
the specific heat. In fact, the difficulties encountered for the Hydrogen atom
are essentially the same which make the d = 3 self-gra.vitating! systems to be
untractable within standard Statistical Mechanics and Thermodynamics [2].
More generally speaking, if we consider d-dimensional systems with attractive
two-body interactions characterized by a potential energy o 1/r* (a > 0;
r =distance), its BG canonical mean value (for the potential) diverges, at
the long distance limit, whenever & < d {quantum effects normally produce
a cut-off which avoids mathematical troubles at short distances). Of course,
the Hydrogen atom and standard gravitation correspond to (a,d) = (1,3),
consequently they constitute a typical case of untractability. A Generalized
Statistical Mechanics and Thermodynamics now available [3,4] addresses pre-

cisely this type of difficulty. It consists in the proposal [3] of the following
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generalized entropy

1-27

S,=k—— @e®) 1)
where k is a conventional positive constant, and {p;} are the probabilities
of the microscopic configurations. In the ¢ — 1 limit, S, becomes the well
known Boltzmann-Gibbs-Shannon expression — kg3 p; In p; . 5, is non-
negative, extremal for equiprobability (n'nicroca.nonic':al ensemble), concave
(convex) if ¢ > 0 (g < 0), a fact which guarantees thermodynamic Eta-
bility for the system. S, satisfies the H-theorem [5], i.e., dS;/dt 2 0 (< 0)
if ¢ >0 (q<0);itis pseudoadditive for two independent systems X
and &' (i.e., if prugs = Pz ® pyr where j denotes the density dperator, whose

eigenvalues are the {p;}; Prugs acts on the tensor product of the Hilbert

spaces respectively associated with T and '), in other words it satisfies

SZUE' S): SB' SE SE'
-8 . % 2 P Yl St

Consequently, unless ¢ = 1, §, is generically nonadditive (nonextensive).

If the system is in thermal equilibrium at temperature T = 1/8k we must
optimize S, under the constraints T'r 5 = 1 and Tr p? H=< H >.=
U, [3,4) where H is the Hamiltonian and U, is a finite quantity (generalized

internal energy). We then obtain

H =
p= [1-8Q ;'9')7" ] (3)
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with the generalized partition function given by

Z,=Tr[l - B(1 - q)H |7 (4)

In the ¢ — 1 limit, these expressions recover the BG distribution g =

exp (—BH )/2,. 1t can be shown [4] that, for all values of g,

1 8s,

=2V 5

7=, )

8 2;77-1
U, = "% 1-q¢ (6)
and
1279 -1
FelU-T8S=-3-1"— . (7)

In addition to the above properties, the present generalized statistics: (i)
leaves form-invariant, for all values of q, the Legendre-transform structure
of Thermodynamics [4], the Ehrenfest theorem and the von Neumann equa-
tion [6], as well as the Onsager reciprocity theorem {7}; (ii) satisfies Jaynes
Information Theory duality relations [6], necessary for the associated entropy
to be considered as a measure of the (lack of) information; (iii) generalizes
the Langevin and Fokker-Planck equations [8], the quantum statistics [9], the
fluctuation-dissipation theorem [10], among others. This generalized formal-

ism has already been applied in a certain amount of problems: self-gravitating
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astrophysical systems [11], Lévy flights [12], and others. As mentioned above,
we are primarily concerned here with the gravitational case. What has been
essentially proved [11] is that d = 3 gravitation is consistent with simulta-
neously finite mass, energy and entropy if ¢ < 7/9 (this threshold has
been obtained from [11) by performing the ¢ « 1/¢ transformation which is
necessary in order to correct the fact that the authors have used the early
version [3] of the generalization rather than the correct one [4] ). Another
argument which points ¢ < 1 for such systems is given in Landsherg 1984
[2]; indeed, it is there demanded for the entropy to be superadditive, which
only occurs here (see Eq. (2)) for ¢ < 1. Since the exact (a, d)-dependence of
q 1s still unknown (in contrast with d = 1 Lévy flights, where 1t, is known [12]
} we shall address, for the positive-temperature dependence of the specific
heat of the Hydrogen atom, typical values of ¢ in the range (0,7/9).

The Hydrogen atom spectrum is given by

¢x=R(1— ':—,-) (n=1,2,3,..) ®8)

with the degeneracy

gn = 2n° (9)

where R is the Rydberg constant, and we have chosen the fundamental
state to have zero energy. The well known BG prescription for the specific

heat is given by
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C R ,]& ]
T =\ nPn nPn 10
= (o) {ggp “E_:lgp } (10)
where B
e _
e ¥z
pﬂ = 21 . (11)
with
=) Gm e~ em/ksT (12).

m=]

A quick inspection reveals the already mentioned mathematical untractabil-
ity of this calculation. For ¢ < 1, Eq. (10) is extended into [10,13]

%=%{Z (C"/ A ] [ignpi(en/R)] Zgupn (&/R) }

n=1 n=1 n=1 R
(13)
where
_kT
t= (14)
and
1] — 14t 7']'7 -
pn = [ . :’ZGR] , if .lt_q%‘ <1 (p, =0, otherwise) (15)

with
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Z, = m'[1 el 2 | (16)

The sum 3 is interrupted whenever the argument becomes negative. In
practice, all these sums are computationally replaced by fimy_.» i" The
results are indicated in Fig. 1. As illustrated for ¢ = 0.5 in Fig.l(a)r:“a,noma,-
lies occur at all dimensionless temperatures 1, = (1 —g}{(1 —1/n?) (n =
2,3,4,..); the limit N — oo provides C, zero for all dimensionless tempera-
tures t > (1 — ¢). In Fig.1(b) we present the exact specific heat associated
with three typical values of ¢ below 7/8 . In the ¢ — 1 limit, the entire
function collapses into the physically inacessible T' = 0 axis.

We are unaware of any calorimetric experiment on (highly diluted) non
ionized Hydrogen atoms with which comparison could be tempted. But, on
theoretical grounds, one point has been achieved: the reoent.ly. generalized
Statistical Mechanics makes, for ¢ < 1, the Hydrogen atom specific heat a
computable quantity. So, in some sense we can say that, analogously
with what happens with the gravitational systems [11], the cut-off naturally
appearing in the formalism whenever ¢ < 1, "regularizes the theory”.

We acknowledge interesting discussions with D.P. Prato as well as com-
putational assistance of J. M. Araijo. One of us (C.T.) acknowledges warm

hospitality received at the Universidade Federal do Rio Grande do Norte.
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Caption for figure

Fig.l - Temperature dependence of the specific heat: (a) For ¢ = 0.5
(when the number N of terms in the sum diverges, C, vanishes for all
kT/R > 0.5); (b) For typical values of ¢ below 7/9 (exact results). When-
ever kT crosses the Hydrogen atom levels, the specific heat presents diver-
gences if 0 < ¢ < 1/2, cusps if ¢ = 1/2, and discontinuities in its derivative

ifi/2<g<l.
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