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Abstract

Complex vector fields with Maxwell, Chern-Simons and Proca
terms are minimally coupled to an Abelian gauge field. The con-
sistency of the spectrum is analysed and 1-loop quantum corrections
to the self-energy are computed and discussed.
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1 Introduction

One of the central problems in the framework of gauge field theories is the
issue of gauge field mass. Gauge symmetry is not, in principle, conflicting
with the presence of a massive gauge boson. In 2 space-time dimensions,
the well-known Schwinger model puts in evidence the presence of a massive
photon without the breaking of gauge symmetry [1}: a dynamical mass gen-
eration takes place by virtue of fermion 1-loop corrections to the Maxwell
field polarization tensor.

Another evidence for the compatibility between gauge symmetry and mas-
sive vector fields comes from the study of 3-dimensional gauge theories [2, 3}.
A topological mass term referred to as the Chern-Simons Lagrangian, once
added to the Maxwell kinetic term, shifts the photon mass to a non-vanishing
value without breaking gauge invariance at all [2, 3]. Even if the Chern-
Simons term, which is gauge invariant, is not written down at tree-level,
it may be generated by 1-loop corrections whenever massive fermions are
minimally coupled to an Abelian gauge field {4, 5, 6]. Again, a dynamical
mass generation mechanism takes place. Also, in 3 space-time dimensions,
there occurs a dynamical fermionic mass generation if massless fermions are
minimally coupled to a Chern-Simons field (4, 5, 6, 7).

In the more realistic case of 4 space-time dimensions, the best mechanism
known, up to now, to solve the problem of intermediate boson masses is the
spontaneous symmetry breaking mechanism [8, 9]. It is not known any 4-
dimensional counterpart of the dynamical mechanism to generate gauge field
masses along the lines previously mentionned. However, in 4 dimensions, one
should quote the dynamical breaking of chiral symmetry which takes place
through a dynamical mass generation mechanism for fermions [10, 11].

Since, over the past years, 3-dimensional field theories have been shown to
play a central rle in connection with the behaviour of 4-dimensional theories
at finite temperature {12] and in the description of a number of problems in
Condensed Matter Physics {13}, it seems reasonable to concentrate efforts
in trying to understand some peculiar features of gauge field dynamics in 3
dimensions.

The main propose of this paper is to consider 3-dimensional models built
up in terms of complex vector fields with Chern-Simons terms and to which
one minimally couples a Maxwell field. At tree-level, we study the Chern-
Simons-Maxwell (CSM*) and the Chern-Simons-Maxwell-Proca (CSMP*)
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cases, in order to analyse the conditions to be set on the free parameters
of the Lagrangians so as to avoid the presence of tachyons and ghosts in the
spectrum. This is carried out in Sections 2 and 3, respectively. In Section 4,
we study the Abelian CSM* model and show that, upon the incorporation of
1-loop corrections to the CSM*-field self-energy, a finite Proca mass term is
generated. The analysis of Section 2, in combination with the latter result,
ensures that the generated Proca-like term does not plug the theory with
tachyons or ghosts. Finally, in Section 5, we draw our general conclusions
and present our prospects for future work. Two appendices follow: the re-
sults for 1-loop self-energy diagrams are listed in the Appendix A. In the
Appendix B, the explicit results for the momentum-space 1-loop integrals
are collected. The metric adopted throughout this work is 5, = (+;—,-).

2 The Complex Chern-Simons-Maxwell Field
(CSM*)

The CSM* model is described by the Lagrangian

1 ouv pe 1 .
Losy = 56" BaGuw — 537 WG (1)

where G, = 8,B, — 9, B, and G}, = 9,B; — 8,B; are the field-strengths,
and M is a real parameter with dimension of mass. -

There are two kinds of U(1) symmetries that may be observed in (1). A
global U,(1) given by

B,(z)=€e“B,(2) , (2)
where « is a real parameter, and a local Up(1) that reads
B,(z) = By(z) + 8,8(z) , (3)

where $(z) is an arbitrary C*™ complex function. The question involving
gauge symmetries with complex parameters has already been contemplated
in the context of spontaneously broken symmetries in supersymmetric gauge
models {14].

To minimally couple the CSM* fields, B, and B;, to the Maxwell field,
A,, we define the following U,(1)-covariant derivatives :

D, =0, +iwA, and D =98, —iwA,, (4)
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where w is a coupling constant with dimension of (mass)}. Then, the total
Lagrangian becomes

Losm(B,B*,0B,8B", A) = L[%,(B,B’,DB,D"B") - -I-F,,.,F"”

1 auy D L] ' l ¥

= 56 H B G,‘,—mG‘wG” -_— ,WF‘“ ,(5)

where G, = D,B,—D, B, and F,, is the field-strength for A,. By replacing
the covariant derivatives as given in eq.(4), the total Lagrangian reads :

1 1
Losu = —3FuPF™ + 5 BiGu — =Gy, G 4 iwe™* B ALB, +

2 2M W
, W G* A*BY - C i ey w? o e
~i2(Gl, A"B” — GuAB™) ~ 3(A,B, — A,B,)A"B™ .(6)

It can be noticed that the local Ug(1)-symmetry (3) is explicitly broken by
the interaction terms in (6).

In order to perform the analysis of the spectral consistency of this model,
it is necessary to obtain the propagator for the fields B and B*. Since
the local Us(1)-symmetry is broken only at the interaction level, we need a
gauge-fixing term to be able to read off the propaga.tors So, for the sake of
extracting them, we consider the Lagrangian below :

1 1
- 7T v L
‘CCSM C BQG 2M

where & is the gauge-fixing parameter.
The field equations coming from (7) are given by

o7 Cw G + = (3 B*)(8,B%), )

O°B:=0, &
with o oo\ 0 (o0
€0 — ko [
= —¢ 6;—H(q *?)4'3(?): 9)
where Py P
O = 9" — 5 S* = "3, and Q¥ = o {10)

are spin operators that fulfil the algebra displayed in Table 1.
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Table 1: Operator algebra fulfilled by 1,0 and S.

Inverting the operator O with the help of the Table 1, we obtain the
following operators in the transverse and longitudinal subspaces :

(O = Za~ (11.a)
and '
M? o
=y . uv = O
(O = D(D+M,)[s = © ] . (11.b)
As {
<T[B*(y)B*(z)]>L = —i (O} &(z ~y) (12.a)
and
<T[B*(y)B"(z)) >r = —i(OF')* &(z-y), (12.b)
then, in momentum-space, we have
v . & (k*kY
AL(k) = i ﬁ( o ) (13.2)
and
M? k? k &k
N s by o B
AY(k) = zk’(k’—bﬁ)[” kk+M(q 5 )] , (13.b)

where A7’(k) and A7’(k) are the CSM* propagators in the longitudinal and
transverse subspaces, respectively.
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By saturating the propagators with external conserved currents, J* and

J#*, we get the following expressions for the imaginary parts of the residues
of the amplitudes at the poles :

ImRes{J, A¥(k) J*} lireo =0 , (14.2)
ImRes{J, A (k) J)}|li2=0 =0 (14.b)

and
ImRes{J, A (k) J2} e = 2M JJ . (14.¢)

Then, the following result on the spectrum can be stated :

L — sector — pole at k* = 0 non-dynamical (on/off-shell) (15.a)

pole at k* = 0 non-dynamical (on-shell}
T — sector — ole at k2 = {dynamlca.l
P - no tachyons, no ghosts if M > 0

(15.b)

Thus, we may conclude that, once the mass parameter, M, is taken to be
positive, the CSM* model describes a free physical dynamical excitation of
mass k? = M2, Nevertheless, to have full control of the unitarity at tree-level,
it is still necessary to study the behaviour of the scattering cross sections in
the limit of very high center-of-mass energies [15].

3 The Complex Chern-Simons-Maxwell-Proca
Field (CSMP*)

The CSMP* model is described by a Lagrangian obtained from (1) by the
addition of a Proca term, 4B, B*. Then,

1 ~ D
bour = 3 BiGu ~ 5 OLO" +IEE (19

where ji is a real parameter with mass dimension.
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1t may be observed that the Lagrangian of eq.(16) exhibits only one global
symmetry, U,(1) : _
B (2} = B,(z) , (17)
where a is a real parameter. The local symmetry Ug(1) (3) is explicitly
broken by the Proca term.

Carrying out the minimal coupling of the CSMP* fields, B, and B}, to
the Maxwell field A,, one gets the Lagrangian

1 1 v 1
Losmp = —ZF,WF”” -+ ECQ”VBGG“, - mG;,

+iwe™ B*A,B, — ii-';» G, A*B’ — G, A*B™) +

G* + jB.B* +

2
-%(A,,B, — A,B,)A*B™ . | (18)

To pursue our investigation on the consistency of the spectrum, we shall
now derive the propagators for the CSMP* fields and then analyse their poles
and associated residues.

The field equations following from (16} read

O“B: =0, (19)
with 56 .
17— (LT __D__ o -5t
Oz —¢ 3,,—M(n _I:!) ™. (20)

Again, Table 1 is used in the task of inverting the operator O (20). We
find :

o = —i: o (21.)
and

-1y M m -

o) = CEY Y [M §* — (D + sM) ©6*] . (21.b)
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The momentum-space expressions for the propagators are :

Af(k) = % (k:f) (22.2)
and
- , M o r . w R
AT(K) =~ My - R [’M ek + (K - M) (n - —;‘,—)]
. M N ) B
- T ek @ - (v - 5],
(22.b)
where |
mi = o M42+ /MM 47)) (23.0)
and '
mi o= 2 (M+2i— MO +43) ], (23.)

where M(M + 4j) > 0, in order to avoid unphysical complex roots.

To avoid the apperance of a double pole, m3 = m?, (which would cer-
tainly lead to a ghost) we must actually have M(M + 44) > 0.

Again, by saturating the propagators with external conserved currents,
J# and J**, we get the following expressions for the imaginary parts of the
residues of the amplitudes at the different poles :

ImRes{J, A" (k) J2} kom0 =0, (24.2)
_ MM +/M(M + 4
ImRes{J, A% (¥) T2} |ircms = [ (M40 1 (2am)
VM(M +43)
and
] MM — /MM + 4
ImRes{J, A% (k) J2} [izams = — [ M40 ) roae)

VMM +4j3)
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The summary of our analysis is therefore :

poleat kK =m {dynamncal
* | no tachyons, no ghosts if M and & >0 )

ole at k? = m3 {dy namical
L ~ L no tachyons, no ghosts if M and ﬁ() (;
25

The analysis of the residues shows that the T-sector is free from tachyons
and ghosts whenever & > 0 and M > 0.

The conditions & > 0 and M > 0 automatically avoid a double pole.
Then, the CSMP* model is perfectly physical, as long as the spectrum is
concerned, if these two conditions are set. Nevertheless, as in the case of the
CSM=-field, to have full control of the unitarity at tree-level, it is necessary
to study the behaviour of the scattering cross sections in the llrmt of very
high center-of-mass energies [15].

A peculiar feature concerns the presence of two different simple poles
in the transverse sector. This is also a characteristic of a real CSMP-field.
They are to be interpreted as two distinct excitations whose spins have to be
fixed in terms of the masses, after a detailed analysis of the Lorentz group
generators as functionals of the fields is carried out, in the same way it is
done for a topologically massive theory [3]. However, each of the masses has
a definite value for the spin (there is no room for different polarization states
in D = 3), so that the 2 degrees of freedom of the real CSMP-field correspond
to the 2 possible mass states. In the complex case, the 4 degrees of freedom

are associated to the 2 different states of charge that each massive pole may
present.

T—seclor —+

4 Dynamical Mass Generation in the CSM*
Model

By reconsidering the Lagrangian (6), the following interaction vertices (see
Fig.1) come out :

LM = iwe™™ B2AB, — Vi, (26.2)
L3 —i%(G;,,A“B”—G,,,A“B“’) — % (26.b)

and
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. 2
L{Ca'.%gi = = "u';'l" (Aqu - Aqu)A"Bw —— ‘,4 3 (26.0)

Before the calculation of the Feynman graphs relevant for our analysis
on the mass generation, we present the expression we get for the superficial
degree of divergence of the primitively divergent graphs.

Analysing the CSM* propagator in the high energy limit, and taking into
account the interaction vertices above, we find the following expression for
the superficial degree of divergence, §csas :

3 1_ 1 1
605,\,{ =3 - 5‘03 - "2‘1)3 - Uy - EEA - EEB y (27)

where v3, ¥a and v, are the numbers of vertices Va, V5 and V, respectively,

E, are the external lines of A, and Ep are the external lines of B, and B.

Therefore, the CSM* is a super-renormalizable model: ultraviolet divergences

appear only up to 2-loops. Now, since in 3 space-time dimensions no 1-loop

divergences show up, all renormalizations have to be performed at 2-loops.
The vertex Feynman rules of the model are as below :

(%)auv = Weapup (28.&)
- LW .
(V3)ﬁlw = ‘H(ﬂvakn - ’?uakv + Qo — qpyma) (28]))
and

20
(Vl)avﬁ.u = ‘_ﬁ‘(ﬂoﬂqgv - ﬂuvﬂﬂu) . (28.(:)

In Fig.2, we list the 1-loop diagrams (£, A, ER, ZL, and I') which con-
tribute to the CSM*-field self-energy. The explicit results for these diagrams
are presented in Appendix A.
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Ve

Figure 1: Interaction vertices.

Figure 2: 1-loop CSM*-field self-energy diagrams.
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Bearing in mind that we are concerned with the possibility of inducing a
1-loop (finite) mass contribution of the Proca type, we can select only those
terms that do not exhibit any dependence on the external momenta and are
moreover symmetric on the free indices of the external lines. Therefore, the

only terms that potentially contribute a finite Proca mass term have been
found to be :

Pk kok
(Il)aﬁ = "H (2,‘_)3 (k p)‘(kf—M’) (293)
kak
- M / dz/ (211')3 (k2 — 2k.pz + (p? i M)z — M3)3°
w! kz

(B)as = 57 (2;)3 = (e = F%) (29.b)

_ W / d &£k kk* -

= M’?aﬁ z (2’)3 [kz —2kpr + (p: + Ma)z — Mglz ’

1

Is)ap = Mutnas ] B (k p),(k, ) (29.0)

= M j dx j 1

- Y (27)3 [k? — 2k.pz + (PP + M3)z — M2

and
kak .

(I)ap = Mu? _[ P (k o (k," o (29.d)

N ko ks

- j / (21)3 [I«:2 2k.pz + (P + M?)z - M’]’
kaks

M f dzf (2x)3 (k? — 2k.pz + pPz)

With the help of the momentum integrals (42}, (43) and (44) in Appendix

B, expressions (29.a), (29.b), (29.c) and (29.d) can be written as the following
parametric integrals :

. W 1 z
(Il)aﬁ = zSWM {pappjo dz [pzxﬂ — (pl + Mz)z + le* +

+res [ " dalpta? — (5 + MY)z + M}, (30.a)

2 2
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. WP 2 1 z?
(I2)ap = 'W’Jaﬂ{? /o dﬂ-’[p,z, = + Mz + MR +
+3 jo ' dz{p*s® — (p* + M?)z + M’]*} , (30.b)
WM 1 1
(s = iTgtug [ b (30.¢)
and
Ies = 2% =

1
8rM {”“”"/o @ P2t — (7 + M)z + M7}
4 10p [ dalps? - (F 4 MO)z + M) 4

2
= PaPs jo l dz ( — Nap ./o ' dz(p*z® ~ p’:’c)*}(SO.d)

T

p2z? - p’z})?

The explicit results of the remaining integrals, (30.a), (30.b), (30.d) and
(30.d), are presented in Appendix B. By observing these results (see 45, 46,
47 and 48}, we conclude that a 1-loop term given by ¢ 3“;;:;,5, coming from [,
and I, will lead to the generation of the Proca term.

The whole 1-loop CSM* self-energy diagram, 0!, is the sum of the dia-
grams B, A, =%, =L and T of Fig.2 :

A =N A+ER4EL4T, (31)

By summing up all these pieces, we finally get that the 1-loop induced
Proca term comes from the contribution

2
1 aﬂ . W o = A o
G =i P =i, (32)
from which we can readily read the Proca mass :
2
= B >0. (33)

v

It is interesting to emphasize that this term, Qg), generated by the 1-loop
quantum corrections to the CSM* self-energy, is a finite one, therefore it will
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not be necessary to add any counter-term to the Lagrangian (6). Such a
finite term amounts to the contribution

¥ = pB:B* (34)

to the classical Lagrangian. Since the parameter f in Lf-}) automatically sat-
isfies the condition /i > 0, the espectral consistency discussed in the previous
section is not jeopardized.

5 General Conclusions

Our basic proposal in this paper was to understand a number of features
concerning the dynamics of complex vector fields in D =1 + 2.

The first step of our study consisted in establishing conditions under
which a general CSMP complex vector field describes physically acceptable
excitations. It was obtained that such a complex vector field describes, in
principle, two distinct massive excitations, each of them appearing of course
in two states with opposite charges. The value of the spin for each of those
massive states has not been calculated here [16]. _

Having understood how to contro] the physical character of the quanta
of the model, we proposed to study the dynamics of a CSM*-field minimally
coupled to an Abelian vector field (Maxwell field). The explicit calculation
of 1-loop corrections revealed the generation of a (finite) Proca term that
was not present at tree-level, respecting the spectral conditions set on the
study of the propagation of the CSMP*-field. We then concluded that the
1-loop Proca mass generation does not introduce neither tachyons nor ghosts
in the spectrum. As for the unitarity, it still remains to be investigated the
asymptotic behaviour of scattering amplitudes for very high (much higher
than the masses of the quanta) center-of-mass energies.

Also, another delicate point should be discussed. The CSM* model
presents divergences at the 2-loop level. Therefore, it is crucial to check
whether or not a ultraviolet divergent term of the form |(8,B*)|? appears as
a2 2-loop contribution to the CSM*-field self-energy. In view of this result,
one may have to add, for the sake of renormalization, the term |(8,B*)? al-
ready at the classical level, and ghosts will show up that spoil the spectrum.
This matter is now under investigation [17]. However, in the Abelian case,
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these undesirable states do not harm the spectrum whenever the CSM*-field
couples to conserved currents [18].

A 1-loop self-energy diagrams

The 1-loop CSM* self-energy dlagrams, T, A, ZR, ZL and T', were calculated
by using the Landau gauge, & = 0, for the CSM* propagator, A, and the
Feynman gauge, { = 1, for the Maxwell propagator, D :

' M2 k? ko k8

af g et | canB = {pP -
AP(k) = —i Rk = M%) 1 ek, + M (q T2 )] »  (35)
D*(k) = —i % ™ . (36)

The explicit results for the diagrams presented in Fig.2 are listed below :

Bap = | o (ot D*(8
&Lk 42 1 Y
= '(“2w_)=*-{ M B ["“’]} =0 1)
Aot = [ s (s D (k=) A™(K) (Bpop

&k 1
- (2«)3{"" (k= p)E(Rs — MO)R2 [Bewete s — Senpbtpi, +

+ €uak?P'Ps — €usk”p pa + ‘mﬁk"kz + 2€405k" (k.p) + fuaﬂknpz] +
+ w ! [—k ksp® + kapp(k.p) + kgpa(k.p) +
M (k~ (k2 — MA)R2 |70 T -

w? 1
- ﬂaﬂ(k'p)z] + E (k — p)z(kz — Mz) [kﬁkﬁ - knpﬁ - kﬁpﬂ - 2Popﬁ +

+ 7apk® + 2nap(k.p} + 2%9?’]} (38)
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=t = [ g (Bl D (k=) A™(8) (T

&k X 1 )
(2#)3{-wa(k - p)?(kz — Mz)kg [fumk"P kﬁ + Cyapk‘"(k.p)] +

. 1
+ Wt TR TO [c,,,gk"k’ + 2c,,,pp"k2] +

1
t M R ["""’ = kopa + gk’ + "“"(""’)]} (39)

- ek
Zep = (253 (Va)au D** (k = p) A% (k) (Va)pos
&£k 1
- (2x)3{ (k — p)?(k? — M?)k2 [‘""”k Phe — cuapk(k ”)]
, 1
* w—.»(k ~ p)(k? — M2)k? [““"""”"2 + Hua?” ’le *

b M (k TR | Fobe — kopa + uak® + naa(kp)] | (40)

-
2
i

]2 @y Voo D (k= p) A%(8) (Vi)pus

= (g:rl;s{ M 2(1: _ p)=(kl= — M)i? [“‘""kx] +
1

=

+ Muw? (k_p),(kl,_ Tors [kakﬁ]} (4)
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B 1l-loop integrals for the CSM*-field self-
energy

To solve the integrals Iy, I, I; and I, in Section 4, use has been made of the
following well-known results [19] :

dPk N .
b = -/(21\')9 (k’+2pk c)e = i(~1) (2,)9(""'?2)?- X
M- 2)
*Ta) (42)

dPk 1z e T e
P T i = D gple+ ) x
Ne-8)
PRy INGY) (43)

and
de 1 ) . wg .
@x)P (K +2pk — o) i(-1) W(c +p*)¥-= x
» [ (a"'—)P"P’—ll‘(a-l_ﬂ)un(c_!_p:)]

B =

I'(a) (44)

We quote in the sequel the results for the Feynman parametrical integrals
performed after the integration over the loop momenta :

.sfM{papﬁ [-2PaM0 g 4 SR eBEP My
- 2
+’Tarﬁ %—LM’ W]}'l'"m,'?aﬂ , P > 0

(h)es = ¢ L iy . (45)
:W{Papﬁ [- 2 M+ ST V]+

L+q“ﬁ[$+i%p_ﬁvl}+i§:_,ﬂaﬁ , PP <0

{ . qaﬁp‘;{p’)’f—,:nf)’ 9+sm (46)
2= V], <0

(Iz)uﬂ

B:rM Nag
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LM ) w ' 2>0
(I3)eg = {‘ x Nad ;;( ; -
‘agu {papﬁ ["" —"q?'srlM + ;3’ 1 3(?’):"':(?;’);’-!-33!‘ WT +
+ Nas [—,5'—:“/5!' (p*- ’)’W]}""a:,'?ﬂ , p*>0
(Idag = ¢ ") 32 +2M 7 43M 1(48)
) {Papa[ O - 7_73.}. ek V +
+ﬂnﬂ[4;ﬂ““V-P +(LD'5—LV]}+132'1’“3 , P’(U

where W and V are defined as

_ﬁ[ln(lp _ M)~ 27 - M) - inb(* — M?)] it * >0
- (49)

= *\/i_.—P, [— ~ arctan ( ;M’:/“ip,)] if o <0. (50)
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