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Abstract

In this letter, one-loop corrections are perfomed to integrate out matter fields
in (1,0} and (1,1)-supersymmetric gauge models. The results obtained are put in

- correspondence with central charge calculations.
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The introduction of world-sheet gauge fields has been exploited as a classificatory
scheme for the various string models {1). Moreover, if one starts off models that ex-
hibit (p,q)-supersymmetry the gauge fields dynamics may be used to reveal remarkable
properties of the corresponding superstring models.

It is our main purpose in this letter to contemplate (1,0)- and (1,1)-supersymmetric
gauge models in order to understand how the matter-gauge field couplings may affect
the dynamics of the starting classical theory. More specifically, we shall integrate out
matter fields in order to discuss the effective action governing the dynamics of the gauge
fields. Issues like the Quillen’s counterterm associated to the anomaly in the holomorfic
factorization [2] and Schwinger-like mass generation are discussed. These results may
be analysed on the basis of a geometrical formulation, but we rather adopt here a field-
theoretical analysis. The eventual relevance of the results we shall obtain is pointed out
in the concluding remarks.

We shall adopt the following conventions in our discussion: the holomorfic part of
the (1,0)-superspace is parametrized by the coordinates (z, Z; 8}, whereas the (0,1) sector
is descroibed by (z,%;0). As for the superconformal (1,1)-model, the coordinates are

taken by (z,%;6,8). Here
z=2z'+iz’ and z=1z'-ir? - 1)

and the space-time metric is taken Euclidian. The Grassmann variables are left-handed
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Weyl spinors. The supersymmetry covariant derivatives are defined by
Dy = 0y — 100, and - Dy =8;—166; (2)

For the (1,0) model, we describe the fundamental matter superfields by means of

their compononent-field expressions as below:

9:(2,%,8) = ¢i(2,7) +0A(2,7), D% =0, (32)
3,(2,7,0) = Bi(z,2)— 0(z,2), Dy®; = 0, i=1,2 (3b)

The assignment of charges to the superfields is such that
B, = ¢t @ | ®)

with ¢ = +¢qifi = 1 and ¢ = —qif{ = 2, p; and B; are scalars and A;, X; are right-handed
SpInors.
Now, for the gauging of the Abelian symmetry (4), gauge superconections have to

be introduced. The gauge-covariantization of Dy and D5 requires superfields

Ty = 7+6V, and Iy=—-%-6%% (5a)
with
1 1 . —

where ¥, v are spinors fields, V, and V; are components of the gauge fields, A and A are

gauge superparameters and ¢ the coupling constant. They build up the gauge-covariant
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derivatives:
Ve =Dy —igqly and ~ Vg= Dy—igql; (6)

To discuss the remaining gauge superfields, we should perhaps notice that the su-
persymmetry algebra suggests that I', appears as an independent connection. Then, by
using the conventional constraint [3], we arrive at the gauge-covariant derivatives V,

and V5 as follows:

I, = iDTy with V, = 8, —igql, (7a)
and
I's = iV5+ G(E + 6,—‘{) with V= 0:—igql's (Tb)

where 7 (n) is plays the role of the photino field. From the supersymmetry algebra

with suitable constraiﬁts on the torsion, the holomorfic field-strength superfield can be

found:
[Vo, V3] = iggW (8)
with
W =7+0F; 9)
and

Fz=0Vs- 08V, - (w0)
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which is the usual Abelian field-strength. Analogously, we can calculate the anti-
holomorfic part, which is necessary as & reality constraint of the (super)action.

This superaction results to be

S=i % [dedz[i0 (VA )Vob)+ B (V.INVR)] (1)

n¥d=1,2

whose component-field expression takes over the form:

1 ; 1 }
5 = -2-/&2 dz {(05 ¢1)(0:02) — 122050, + 2 [ 99(2iVEhi Ay + Hiordo + (12)
+ T2 — (Grp1)Vawa + (Bs02) Vaor + Van(8:02) — Voo Bri01) +

- 29qVeerVipa |+ h. ¢}

where use was been made of (8), (9) and (10). To work out the 1-loop corrections to
the effective action, we wrote below the propagators for the component fields flowing

inside the loops. They are:

LGN (P12 )0r(B) = (B ZJFAD)) = 55 82— 7)) (130)
M(ZN(Z)) = L 62.-2) (13b)

——=p-—- R(ZI(Z) = & 82~ 2) (13¢)

The relevant vertices for the loop calculation are depicted in Fig. 1
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Figure 1: Matter-gauge vertices relevant for the one-loop graphs

With the help of the matter-gauge interaction terms above, one can fix the 1-loop
corrections to the gauge field self-energy diegram, whose complete answer is found to
be:

2.2
Sepr = % /dz aﬁ?{‘;l ViV, — 2V, %—6—_, V.—1n %— n+h c.} + cubic terms  (14)

The finite local term appearing in (14) is crucial for the sw vival of the gauge sim-
metry at the quatum.level; it however breaks the holomorfic factozation property and.
therefore, it is interpreted as the anomaly for the latter [1}.

On the other hand, by analysing the conformal charge of the holomorfic part using
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(12}, we read off the following stress tensor:

() = ~3 (@) @a) - Tada+ 3 (99 (Vi () +
— Vipy(0"1) + (i ~ %) } (15)

whose OPE turns out to be

(TEHTW) = 5 e (168)

¢ = 1/2 (16b)

This is the central charge of (0,1)-model. We point out that this results plays an
important role in the classification of the string models [1,4].
For the time being, we have only calculated and identified some quantum-mechanical
properties of the (1,0) or (0,1) model. We shall repeat the same analysis to the supercon-
formal (1,1} model in order to stress on the connection between the 1-loop corrections

and the central charge of this model. To do this, we present below our relevante matter

superfields:
$(2,%;0,8) = ¢(2,2) + 0X)(2,Z) — 67(2,%) + 00h(z, %) (17a)
®(2,%;6,8) = B(z,Z) + bn(2,%) ~ X(2,%) + 66(2,%) (1)

where we use these component-fields with the definitions

P =@+t y h=hy+ih,
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A=A +idg . n = — i) (18)

with ;, h; real fields, A; complex field and the index ¢ refers to the Noether charge of -

the fields.

The gauge background superfields read as below:

T'¢(2,7;0,6) = v+ 6V, —-8f —486p (19a)

I's(z,%; 90, F) = —y+8V+6f-66p (19b)
with the conventional constraint:
D'y = -, and DT = =iz (20)

Here he note, contrary to the (1,0) or (0,1) model that the superfields I', and I'z are

not independent. Th@ superaction for this model is
- % [ dz dz a0 B(VB)V42) (21)
where the covariant derivatives are defined as
Vo = Dy —igqls and V= Dy —igqly (22)

Here, ¢ has the same definition as given in (4). For component-field calculations,

the relevant commutators in the supersymmetry algebra are:

[Va,V;] = -—igqﬁ and [Vﬁ, V,] = —iqu (23)
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Then, (21) can be written as:

S = 5 [d:dz ((BN0ue) - NG — 30,7 + b 4
+ 99[ilmA = iVHh — Bon + 5PA + 09X — oBH + iy lh +
= A~ f3h+ K + Tk = ol + 1 { - (03 Ve +
— (8:P)1z0 + VaP(8.00) + Vid(Bre) } | +
+ ¢ -V + VATA + Iy = ViEh + FyTp +
+ fBfe — [T ~Tnfe - fErvi~1Afo]) (24)
Where the photino now is given by o = ~tp—0,7(and = —i5 + Ozv). Now, the

relevant propagators are analogous to ones given in (13). Then using the peturbation

scheme the only one-loop contribuition to the effective action are represent in the fig. 2

Figure 2: One-loop correction involving matter fields in the loops
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The final answer for the 1-loop Feynmann graphs drawn in fig. 2 is given by

0;0; 0,0

_ &9 v oy %%y o1 O:0:y,
Sus = L jdzdz{zv,v, 2V, 255V, — 2V +
. BE o_a’ . 88 . a‘—
+ wEa+wEa+:8ff‘ra‘y+18ff‘ya'y} (25)

Notice, now, that the first term in (25) is a dinamically-generated mass term, as it
happens in Schwinger mode! [5]. Finally, we calculate the central charge using the OPE

to the stress tensor associated to (24):

T(z) = — {(0.2)80) ~ iM0im — 51 9a( ViB(Oup) +

- (87 )]} (26)

whose tensorial algebra is given by

{(T(z)T(w)) = 0 (272)

¢c =0 (27b)

As long as conformal symmetry is concerned, this results represents a classical-like
theory.

To conclude this letter_, we would like to point out a few comments on the calculations
we have carried out. According to the discussions of refs {1}, gauge field dynamics
may play a significant role in the classification scheme of string models and possibly

in the issue of supersymmetry breaking in superstrings. Therefore it behooves us a
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better understanding of the quantum-mechanical properties of models that involve 2-
dimensional gauge fields coupled to matter fields through supersymmetry. We have
specified Abelian gauge theories with (1,0) (or (0,1)) and (1,1) supersymmetries. The
results we find here show that in those supersymmetric models there appears an anomaly
in the holomorfic factorization of the gauge field piece of the effective action. The results
presented in eq. (14) is nothing but the Quillen’s counterterm necessary to enforce gauge
invariance of the effective action at the cost of factorization. On the other hand, we
calculate the central charge of the (1,0) (or {0,1)) model and verify, by eq. (16), that
¢ # 0. The central charge signals the presence of a factorization anomaly (Quillen’s
counterterm when ¢ = 1/2 to (1,0} {(or (0,1} model)) or a dynamical mass generation
(6] (Schwinger-model-like when ¢ = 0 to (1,1) model) in the framework of Euclidean 2-
dimensional supersymmetry. This is relevant for exact calculation of partition functions
on Riemann surfaces. It remains to the analysed the generalization of the values of ¢ to
other (p,q) gauge models and the constraints to the pertubation terms. This would be
very important for classifying superstring models.

The component-field results reported here for (1,0) model are supported by a su-
perspace calculation carried out in ref. [3,6]. It would be further interesting to analyse
the consequences of our @nclusions in a model that possesses local supersymmetry,
since this would be the case actually interesting for string calculations. A breaking of

factorization also in the gravitational sector would signal a remarkable observation in
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the process of solving partition functions for theories on Riemann surfaces.
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