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ABSTRACT:
A chiral bosonic particle based on a linear constraint,
in analogy to a recently proposed similar description for

chiral boson, is quantized and its propagator obtained.
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1. INTRODUCTION:

The quantization of chiral boson which are relevant for
the formulation of Heterotic stringl has been much
discussada'3'4 recently following the the actions proposed
by Siegela and Floreanini and Jackiwa. In order to gain some
more insight on the problem of quantizing self-dual field it
has led to the study of chiral bosonic particlea based on a
constra1n£ quadratic in momenta, inspired from the dimension
zero field formulation of chiral boson described in ref. 3.
In a recent studya. motivated by an analogous situation in
Yang-Mills theory, it was shown that a self-consistent
description and gquantization of chiral boson field could be
achieved by adding to the Lagrangian of ordinary scalar
field an auxilary field to take care of the Clinear2
constraint. The canonical Hamiltonian formulation using the
Dirac's mathcd7 can be built in a self-consistent manner. In
the resulting theory the field itself satisfies the
self-duality condition and there is no violation of (micro-2
causality principle, contrary to what we find in the
description of chiral boson as given in ref. 3.

We propose here to describe, in analogy toe the
description in ref.8 of the self-dual field, a chiral
bosonic particle based on a constraint which is linear in
momenta and quantize the theory using BRST formudationa and
obtain also the propagator using functional integral

following the BFVQ formulation. Our action is different and

perhaps more faithful compared to the one proposed in ref.S
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in that the linear constraint is imposed at the Lagrangian
lével in the second order formulation which leads to a
self-consistent Hamiltonian theory with a constraint again
linear in momenta. We do not agree with ref.5 in that such a
term viclates repa.rametriéation invartance. It will become
clear from the discussion to follow. Finally we comment on
the differences here compared to the theory of self-dual
field where a Wess—Zuminc like term must be added to

compensate the undesired mode.

2. CHIRAL BOSONIC PARTICLE:

In order to make the discussion parallel to that of
chiral boson as given in ref.8 and follow the difference we
take the following reparametrization invariant action for a

left moving massless relativistic particle
S= I (-2 st + & an—s“v):'c } dr €1
' 2 ¥ [ “
It is convenient Lo rewrite the Lagrangian as

L o= ;%— [Cx®2-0x%) + atx®-x" &

where I'r is an invariant monotonic parameter such that
<2=dx®CTd/dr>0 and an overdot indicates derivative with
respect to . Under the one dimensicnal diffecomorphisms,
ro7’=r~-67, L transforms like a density ,6L=d(L&7)-dr, and

s do oC-t).J:cu while x“,pp transform like scalars,e.g..
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&x=x%5T7 etc. and there is no problem with the linear term in
(1) as regards the reparametrization invariance.

Following the Dirac method7 for handling degenerate
action we find paz O.pez O as the primary constraints while
the canonical Hamiltonian is given by

H_ =e (3p -p)> -alCp_+p ) €3
Requiring then the persistency in 7 of these constraints
leads to the secondary constraint ¢ _.=.Cp°+p‘)a: G and the
Hamiltonian vanishes as expected due to the
reparametrization invariance. No further constraints are
generated and the constraints are first class. We may ignore
the first two of them by choosing the gauge-fixing
conditions @ = O0,a =& O and defining Dirac brackets with
respect to them. The Dirac brackets of x,p coincide with the
standard Poisson backets and e=a=C are now strong relations.

Hence we arrive at the following (reduced) Lagrangian in the

first order formulation
L= xpp“— ACTICP +p O cad

where the first term is by itself a density with respect to
reparametrizations. It follows that the Lagrange multiplier
A must transform as a density too and the action (4> 4is then
reparametrization invariant. All the dynamics in the theory
is given by the constraint ¢ which generates gauge

transformations. We find easily that the following local
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-l

gauge Lransformation leaves the first order action C4D
invariant

6x"=eCTd, O3 =£CTd, &p =6p =0,  EA=£CTD B

where £(1) transforms like a scalar.

3. BRST QUANTIZATION:

Corresponding to the local symmetry (82 we define by
the well known procedure the following fermionic BRST
symmetry s, s’ao. over an extended phase space which carries
in addition to x,p two fermionic ghost variabless n and 3
along with a gauge invariant bosonic variable b for

gauge—fixing

sx =y, sx‘=n. sp_=sp =0, s»=0, sk=y, snp=b, sb=0 e
The BRST invariant action is easily found to be
L= L_+ s [9CA +b/2>)= L + bA +C/Db" + 7 &)

We may identify the field b with Py the momentum canonical
to A with SPA=°' The canonical quantization may be performed
now  over the extended phase space with variables
<x“.pp.k.px.n.ﬁ}P.Fﬁ where P,and P are canonical momenta
conjugate to 7B and 1 respectively and satisfy
{P.7}={P.n}= -1. The Hamiltonian is found to be

H=PP - 2 p; + ACp_+p> cad



CBEF-NF-029/89

and the graded brackets must be used. In addition to the
BRST symmetry generated by the conserved nilpotent charge
=1 Ppk-i-nc p°+p’) 3 wo also have an anti-BRST symmetry in our
case generated by the nilpotent conser ved charge
ﬁ*!-?bk+ﬁtpo+pi)] .40,80}=0 and the physical states are

required to be annihilated by both of these operators.

4. PROPAGATOR:
The gquantized propagator in the BF‘Vg formulation 1is

constructed as follows. We construct an effective action

T

S opo=] o [xPpp+ka+ P + 7P - {0, ¥} 3 o
[ » ]

where ¥ is an arbitrary gauge-fixing fermicnic function. We

found above Q1 = ng + Ppk and will make a convenient choice

for ¥ =-AP which gives rise to proper time gauge A0, We

find
{a, ¥} = ACp +p D + PP 102>

We consider the BRST invariant boundry conditions (see (80D
pk=nﬂ5¥0 for =0 and r and also find from classical eqgns. of
motion x={x,H}=A leading to O <A< w. The quantized theory
propagator is then obtained from the following funct.ionalh
integral

wH =yt

KCX,¥D= I {dul exp CiS

e c11d
s
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where x""Co)=X‘u. xMcr>=Y" are the initial and final values of
the particle’s position and {du)] is the Licuville measure of
the extended phase space. We remarks that if we perform the
functional integratation in .C11) over p_ we find that x°= A
is ef fectively implemented for every trajectory in
configuration space and not just for the extremal cnes. The
functional integration over P,P reduces the ghost term in
S’ff to rim In view | of the boundry conditions, the
functicnal integral over p, r_; brings down in the integrand a
factor det c—-a:) . This expression may be r.:t:m'u;n.li*..aa-t:l'al using
{-function regularization taking care of the same boundry
conditions. It results im a multiplicative factor T in the
numerator of K which will be compensated below (see (14)).
The integration over Py brings in a factor &CA) in the
integrand. To integrate over the coordinates we first do a
shift transformation from > to {p

sH=x + aAHr g + gH M= aHoy « gH 12>
where AM=CcY-x>H so  that Z,(od=f (13=0. The functional
integration on ¥ now brings down delta f‘um;:tional of p
obtaining
Kep= 1 | rcmtdpojtdp116ci>5c;'=°)5c;':1> exp if:d-r [ppA‘u/'r -l

€13

where a numerical normalization factor is suppressed. Onl y
the constant modes survive due to the delta functionals-
turning the functional integrations into the ordinary ones

\ K
KCAD= T I d*p J dn eiP-4 IMp +p —iedT €14
]

€ C. Teitelboim, Phys. Rev.DeS, 315SC1982).
# A. Cohen et.al., Nucl. Phys. B287, 143C1086).
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Here we have introduced a damping factor in accordance with
that A>0. Thus the factor T ° coming from the integration
over A compensates the one arising from the ghosts and the

propagator (uptoc a multiplicative constant? is found to be

eip.Cy-x) 3

z
KCx,yD = ]“—'-P-
¢

zn)z Cpo"'p‘ —ied
x 6y —xr6Cy —yC -t 1> €183

8. COMMENTS:

In spite of the apparent =imilarities with the theory
of chiral boson” we find that in the case of the chiral
particle po.pl commute and the reparametrization invariance
forces the constraint to be first class while in the former
case 1'1':’.111 do not commmute and the constraints are second
class. We must addlo a Wess-Zumino like term to make it into

a gauge theory which compensates the undesired mode cno-n‘a.

ACKNOWLEDGEMENTS:
Acknowl edgements are due to Professor Steve Adler for a

constructive discussion on the problem of chiral boson.



CBPF-NF-029/89

REFERENCES:

1.

D.J. Gross, J.A. Harvey, E. Martinec and R. Rchm, Phys.
Rev. Lett. 54, S02 (198%); Nucl. Phys. B238, 283 (1985):
B2e7, 78 (1986,

W. Siegel, Nucl. Phys. B238, 307 (1984).

R. Floreanini and R. Jackiw, Phys. Rev. Lett. 85g,
1873 C1987>.

J.M.F. Labastida and M. Pernici, Phys. Rev. Lett. B89,
2811 C1987); Nucl. Phys. B2G7, BS87 (1988);

C. Imbimbo and A, Schwi mmer , Phys. Lett. 193B,
3VCLOB7D ;

H.O. Girotti, M., Gomes, V.0. Rivelles and A.J. da Silva,
preprint IFUSP-P-782 (1984QD.

M. Gomes, V.0O. Rivelle=s and A.J. da Silva, Phys. Lett.
2188, 63 (1980).

P.P. Srivastava, Quantization of Self-Dual Field
Revigsited, preprint CBPF-NF-023-89, June {(198Q).

P.AM Dirac, Lectures on Quantun Mechanics (Belfer
Graduate School of Science, Yeshiva Univ. Press, New
York, 1984),

C. Becchi, A. Rouet and E. Stora, Ann. Phys. 98, 287
C197ed.

I.A. Batalin and 6. Vilkovisky, Phys. Lett. 69B, 309
CA877D;

E.S. Fradkin and 6. Vilkovisky, Phys. Lett., 8SB, 224

C1979D.

10. P.P. Srivastava, in preparation.



