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A scattering unit concept is used to solve Maxwell’s equations for a Darwin-
type model of a crystal. The latter is taken to be a stack of identical and equally
spaced dipole planes. The self-consistent solution obtained for one of the planes is
extended to series of planes representing the whole crystal. The solution obtained
in closed-form, depends upon: a) continuity of all vectors which define the EM
field between the adjoining units and b} geometric similarity of EM fields which
activate the dipoles at different planes. Once both conditions are satisfied they
bring about: the modified Bragg law and a hyperbola relating phase-shifts of
both waves equivalent to the main equation of the dynamic theory. While the
model is a development upon that of Darwin. the two divergent points from his
model are: a) vectorial waves are used to define the EM field instead of scalar
waves. b) interaction of all dipoles within the same plane is taken into account,
wherein the principle of energy conservation is obeyed. Our model accepts: i) an
imperfect upper crystal surface, ii) the second incident wave at the Jower crystal
surface may be of arbitrary amplitude and phase, iii) periodicity deviations due
to the thermal motion or defects, iv) any actual crystal size {small or big).

Rey-words: Bragg law; Darwin model; Ewald self-consistency principle.
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L INTRODUCTION

There have been developed historically, three formulations of the dynamic theory
to account for the X-ray diffraction patterns from perfect crystals. The first pheno-
menological theory given by Darwin’ takes advantage of the same complex amplitude
summation carried out by the formalism of the Fourier transform but effected within
the crystal space, rather than at a far away distance, such as required by the plane
wave model. The second theory, due to Ewald?, solves Maxwell’s equations for a
periodic array of classical dipoles under the self-consistency principle, in which pola-
rization at a given dipole depends upon the polarization of the other dipoles within
the crystal as well as the externa! field [see Slater®]. This second theory was extended
by vonLaue! for a medium of periodic, continuous and complex dielectric constant
into the most generally used form. In this extension, however, the theory assumed
a macroscopic aspect and the Ewald’s self-consistency principle lost its original and
exact meaning. According to Kato®, each of these three branches of the dynamic
theory offers some attractive points and so may be used at one’s preference. Such
a wealth of theoretical tools, however, seems to be yet not adeguate as shown by
many examples of the diffraction profiles analysis where dynamic-type arguments are
applied to the main body of the diffraction peak and the kinematic ones to its slopes.

We propose a new approach to the X-ray crystal scattering in which the Darwin
mode] of scattering is a reference base, the Hertz vector method is the main ins-
trument of calculation and the Ewald self-consistency principle is rigorously applied.
By applying the formalism, which has already been developed for the scattering unit
(Keller®; here called paper 11), and requiring the geometric similarity of the EM fields
we are able to reproduce results obtained by the customary dynamic theory for the
symmetric Bragg case with substantially new information. These results, evolve into
those obtained by means of the Fourier transform continuously linking the two for-
mally different X-ray theories {dynamic and kinematic) into one common approach.
The theory is valid for big perfect crystals, for small ones and for imperfect ones.

II. CRYSTAL MODEL

The model used for calculations is essentially the Darwin model of scattering in a
situation when the cross-grating diffraction effects become of no importance and when
only the two interacting waves have to be considered. In this case it is reasonable
to assume a continuous and constant distribution of the scattering electrons over
all those planes which are normal to the actual diffraction vector’. Since scattering
electrons behave as classical harmonic oscillators we consider the latter planes as filled
up by induced dipoles with a surface density equal to that defined for electrons.
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To take advantage of the formalism worked out in paper II for a single plane of
dipoles we assume a discrete ordering of these latter. Accordingly, the crystal model
is supposed to be a stack of equally spaced and identical dipole planes. One of these
planes together with a neighboring free space, filled up by the propagating field of the
two incident and two transmitted waves, is considered a scattering unit. The above
model, equivalent to regarding the crystal as formed by point-like atoms, one for each
unit cell, will be reconsidered later in order to take into account the actual content
of the unit cell and the actual shapes of the constituent atoms.

A field propagating within the unit, called mesofield in paper 11, is in the self-
consistent interaction mode with a stationary field formed by the two incident waves
and the coniribution due the oscillating dipoles termed epifield. Both above concepts®
have no relation with those used in Ewald’s papers. It will soon be evident that there
is neither need nor place to include them into the present model.

The main conclusions reached in paper II were:

¢ the dipole contributions take the shape of two EM plane waves which are formed
immediately after the take off,

¢ they leave symmetrically the scattering plane with an angle equal to that of the
incident wave,

e the scattering of the two EM waves by a plane of dipoles can be decomposed
into two independent vibrations; normal o and parallel x to the incidency plane,

¢ the self-consistent solution cannot admit any wave that would leave the scattering
plane at any other directions than those two defined by incident waves. This
makes the scattering of two EM plane waves by the plane of dipoles an exclusively
two-beam case. )

The customary dynamic theory regards EM wave-field within the entire crystal
space as a single entity. Here, a space assigned to the eventual solution is actually re-
duced to that occupied by a single unit. The unit frames the smallest element of space
within which a solution for the EM field is actually obtained and all its properties
determined. Within this space of the unit the two interacting waves are coheren-
tly coupled with energy being swapped between them under a strict conservation of
energy regime.

The boundary conditions applied here are, in consequence, much more stringent
than those which usually appear in the customary dynamic theory. Continuity of the
EM field with regard to polarization and wave veciors must be rigorously observed
at all the boundary planes. This equally refers to the internal planes between the
adjoining units as well as to the two external ones which are delineating the entire
model space.
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A demand of the ‘internal’ boundary conditions for all scattering units makes the
all-important crystallographic feature of periodicity, in a way, redundant. This fact
brings about some consequences of a real practical importance. On one hand, it
enables one to treat X-ray scattering from layered structures of special type and, on
the other, to analyze the scattering models over a complete range (0 — 90 deg) of the
angles ©. Accordingly, the treatable layer structures can come from various crystal
substances and be defined by variable plane numbers. Thus, the present approach
seemns best suited for the diffraction studies on superlattices and multilayer structures.

IIl. MODELS AND SOLUTIONS

Since crystal periodicity is no more a sine qua non condition in order to obtain
rigorous solutions for an extensive class of scattering models it becomes useful to use
a ‘periodicity degree’ of the model only as a criterion to classify all possible solutions
for layer structures of different kinds. These latter, obtained without exception nu-
merically, in some particular cases can be developed into suitable analytical formulas.

At one extreme, we have a model of zero periodicity-degree composed by a set of
dipole planes defined by variable dipole densities and spacings. Naturally, the model
gives up a projection of the unit cell content on actual diffraction vector and the
derived solution will contain in some form the structure factor. This solution will be
termed a general type.

At the other extreme, we consider a set made of equidistant and equal dipole planes.
Likewise, the model gives up projection of a perfect crystal structure on the mentioned
diffraction vector and the solution, for some particular values of incidence angle,
should result in the modified Bragg equation. Accordingly, this solution will be
conveniently called a Bragg type.

Somewhere in between the two extremes, a holistic image of self-consistent X-ray
scattering in the symmetric Bragg case valid for perfect crystals, superlattices and
multilayer structures, is obtained.

In order to complete the list of solutions we should state that the Bragg type
solution as a function of the boundary conditions can assume two distinct forms. The
first one, defined by a certain demand on the EM field to be specified later, will be
conveniently called an infinite solution. The other one will be termed a finite solution.
The latter includes an important case of a real solution.

A significance of the names proposed will be made clear by a more detailed approach
in the following sections.
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IV. GENERAL SOLUTION

A procedure to obtain the general solution is a trivial one. From paper 1I we recall
that a function of the scattering unit is completely given by its matrix. In the same
way this function for a set of such units is defined by the resultant matrix obtained as
a product of respective matrix-components while taking into account the continuity of
all the polarization and wave vectors which define the EM field between the adjoining
units.

Calculations will be carried out by means of the notation used in paper I1. Hence,
dipole planes are planes defined by a sequence of equations x = x4, with 7 > 0 and
k=1,...,K and where K is a total number of dipole planes. The first plane is defined
by plane z; = 0. We recali that dipole planes of the model are uniformly filled by
the scattering electrons which vibrate as classical harmonic oscillators without energy
loss. The surface density of electron distribution within the dipole planes of the model
is described by a sequence of real numbers oy.

We assume that two harmonic plane EM waves of an arbitrary elliptical polarization
AP and BY" are symmetrically incident on each dipole plane at a general angle 6.
The polarization vectors of electrical parts of these two waves are given by

£ (F,1) = (A% + Al%) exp[z:(wt-—:g‘ )] }where{ ir = k| sind,cos8,0] )

Bk(r, ) = (B +B' %) expli(wt—ki - F)] ¥ =k[—sinf,cosb,0]

are wave vectors with magnitudes k = 2x/) of the incident waves Aj* and
respectively. Space coordinates are given by 7y = [z—z4, 9, 2]. The pdla.rizat.ion vector
components paralle]l to the incidence plane are denoted by A An . and Bin  while the
components normal to it are given by A™: and Bi%. Each of these vector components
may be represented as a product of a complex amplitude which includes a phase and
a respective versor indica.ting direction of vibration as follows:

= An ., = |A tlexp(ia%), €ra = [cos 8, —siné,0],
= AM&,4, =|A|exp(ial}), &4 =[0,0,1],
Bi» = Bé,s, BN =|Bin|exp(ifih), &y =][cosd,+sind,0],
B'k = Bjié,s, B} =|Blilexp(if}), &5 =10,0,1). (2)

Step-like changes of their amplitude and phase in relation to the incident waves are
included in their respective complex amplitudes, modified after each scattering event.
These waves result from the scattering unit solution which in the first step defines the
self-consistent dipole vibrations, and then the amplitudes of the transmitted waves.

Since the two kinds of vibrations of x- and o-polarization are shown to be indepen-
dent of one another, in the following we will present only the more complex formulas
for the w-polarization state.
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The scatiering unit solution as given in a matrix equation form in paper 11 (eq. 27) is
valid for each k-th dipole plane separately defining the amplitudes of the two scattered
forward (or better, transmitted) waves AY and B’ in function of the amplitudes of
the two incident waves A® and B{".

However, it can be better to define another relationship, namely, between the am-
plitudes of the mesofield acting ebove the k-th scattering dipole plane (superscript a)
and represented by a matrix of dimension 2 x 1

: = [A" B (3)

and the respective amplitudes of the mesofield which appears below this plane (su-
perscript &) defined by a similar matrix of the same dimension

M; = [AL, B, (4)

This can be independently done for both states of polarization. After an algebraic
reformulation to include also the free space environment for each of the dipole planes
and the notation complemented by the subscript k we obtain a new equation much
more suitable for treatment of the stack of dipole planes '

M: = Mpk : Mi? (5)

where M,; represents a new matrix of dimension 2 x 2 defining scattering properties
of a primitive (single) plane of dipoles termed accordingly primitive scattering matriz.
Its elements in an explicit form are

— -1 exp[+ i(ék“" 5wk) ] 1 8in 1
M, = (coseg) [ igineg expl— i(Ei—em)] | (6)

where §;. represents a phase factor due to a path difference between the adjoining units.
The above notation corresponds to a situation where the dipole plane is located at a
center of each unit at £ = z; +dx/2 and each unit space is framed by the z coordinate
confined within a semi-closed interval (zx, Tx4+1] where ziy1 = 2 +di, 6 = kdisind
with di representing a distance between the k + 1-th and &-th dipole planes.

In the case of the o-polarization the two angles £, and £gx, valid for 7-polarization,
are replaced by the single angle £,;. All three are given by

exx= arctan {for / [L— (fpi 5in 20)°/4] },

egr= arctan { for / [1+ (f,+ sin20)%/4] },

Esk= arctan fox (7}
where for = r.0i:)/sin @ is the introduced scattering factor of the k-ih dipole plane,
defined by the classical electron radius r., the radiation wavelength A and the inci-

dence angle 8, all constant for the whole model, and the surface density of electron
distribution &, which can vary from one k-th dipole plane to another.
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We note that the new matrix just obtained has two important properties:
e it is unimodular,
e the matrix elements are complex conjugate on both diagonals.

A general solution for the scattering model is obtained recalling the self-consistency
principle represented for each k-th primitive scattering unit by the matrix (6) and
demanding a continuity of the mesofield between all adjoining units. The continuity
condition means that transmitted waves Al from an upper primitive scattering unit
become incident waves A}, for a lower one and the same procedure is repeated for
waves BY,; and BY", respectively. This condition has to be independently valid for
both states of polarization and for all the internal boundary planes k =1,... K -1
with K a total number of primitive scattering units. It reads in terms of the accepted
mesofield notation as:

M= Miy,. (8)

The general solution obtained under both seli-consistency {5) and cont.mmty (8)
conditions can be written in a matrix form as follows:

Ma =M, - Mg, where M, IIMP" — [c 3“] (9)
k=1 u

a resultant matrix of dimension 2 x 2 valid for any scattering model can be appropria-
tely called, depending on application, a general scaltering mairiz ot unit scatlering
mairiz. Its matrix elements can be given in an explicit way in the form of series.

In fact, if the scattering model represents a projection of the unit cell structure, the
two elements b, and ¢, of the scattering matrix (9) contain the kinematic structure
factor for the front and back reflection from the non-primitive unit cell, respectively.
It may be given in an explicit way and compared with this factor while disregarding
some higher terms in the series.

The matrix formulation of the general scattering problem enables one to see that
the solution obtained for a set of scattering planes is not really different from that
derived for a single dipole plane. Both include respective matrices which transform
the complex amplitudes of the mesofield below the scatiering model into the corres-
ponding ones of the mesofield above it. Both solutions depend exclusively on the
structure itself and not on the EM field surrounding the structure.

In consequence, it is possible to extend the single scattering unit solution to one
which is valid for a crystal. It is represented by the unit scattering matrix (9) and
continuity conditions which refer now to the internal boundary condition between the
adjoining non-primitive scattering units. Again in terms of the mesofield notation it

reads
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M= M, (10)

which the subscript j enumerates the EM ficld solutions which, in spite of the fact
that all the scattering units are identical, does not need to be necessarily the same
for each. It changes as j = 1,--+,J — 1 where J determines the total number of the
scatfering units in the model.

The crystal solution obtained can be also given as follows

J .
M: =Mc'th where Mcanu = :::35] (11)
;=1 ¢ Lo

where matrices M¢ and MY, represent now ‘external’ mesofield above and below the
crystal, respectively. The crystal scatlering matriz M, of dimension 2 x 2 is obtained
as a product of the J identical single unit scattering matrices given before. The
elements of the crystal scattering matrix will be expressed in terms of those of the
unit scattering matrix by means of the Chebyshev polynomials in section 8. The
solution obtained by help of the crystal scattering matrix may be given in a more
explicit form as

, J
;'; _ | & bi-‘- Ait{rJ _ | % bﬂ . A}:’.J (12)
i cc d; B, Cu dy B |

Resuming, in the all analyzed cases the respective scattering matrix can be regarded
as time-reversible EM field operator which transforms the two propagating waves
below the scattering model, into the corresponding ones above it or vice versa. In the
latter case the solution is obtained by help of an inverse operator defined by a matrix
which is in an inverse relation to the respective scattering matrix.

We note also that the same developed procedure is applicable to solving the scatte-
ring problems in the multilayer structures and superlattices.

V. REAL SOLUTION

A real case solution represents a subset of the general solution (12) in the absence
of the second incident wave at the lowest dipole plane in the stack: B}, = 0. We will
take the amplitude of the first incident wave to be normalized according to A =1
for both polarization states which leads to definition of the transmission 7.7 and
reflection R, coeflicients resulting from a particular form of the equation (12):

[é]%d][ﬂ (13)
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In the course of the numerical solution we note that below the lower crystal boun-
dary propagates only one transmitted wave for which we assume first its complex
amplitude equal to 1. Then, by help of the crystal scattering matrix we derive the
two complex amplitudes of both incident and reflected beams above the upper boun-
dary. Finally, we transfer the normalization condition to the amplitude of the incident
beam.

The above method for obtaining the amplitudes of the transmitted and reflected
waves is quite general and, as can be noted, does not depend on periodicity of the
model. On the other hand, taking into account that even for a crystal model its pe-
riodicity does not necessarily refer to the EM field itself, it will be useful to enumerate
solutions obiained for the different scattering units.

It turns out that it is more useful to deal not with the complex amplitudes of
the respective waves but rather with their appropriately chosen ratios. These latter,
conveniently called factors, refer to the same or different beams and will be defined
according to necessity for a single dipole plane, a scattering unit or a conveniently
chosen set of units. Since the introduced factors depend, in general, on a ‘depth’
within the crystal we assume for them the name local. Jointly these factors will serve
to carry out a complete mapping of the entire EM field on the atomic or ‘microscopic’
level.

In some particular cases of the periodic structures the introduced factors may as-
sume the same numerical values for all units of the model and the solution obtained
assumes a macroscopic aspect. It can be given in an analytic form ‘while the factors
themselves will be accordingly called the global ones.

In another most important case of a real situation the above factors-are practically
periodic throughout a substantial part of the model and they are not in that part
which is neighboring its lower boundary. In other words, we note an effect of the
wave field convergence which by itself deserve a separate treatment.

V1. WAVE FIELD CONVERGENCE

The convergence effect in the wave field formation can be regarded as one of the most
significant diffraction phenomena which is usually and most unfortunately overlooked
in the customary approach. The careful analysis of this effect will lead to two impor-
tant conclusions:

o the overall diffraction effect results from only those structural elements which
are statistically repetitive throughout the main body of the scattering structure,

e a perfect boundary surface has for the planar model of structure only a secondary
importance.
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In order to analyze the convergence problem we will take advantage of the factors
introduced in paper Il (eqs. 31,33, 36) which all depend on the structure via the angles
£x and £¢ and on the incident mesofield given by

Fri = Inj exp(in;)- (1)

They are separately defined for the n- and o-polarization states and appropriately
enumerated for the different scattering units by a subscript 3

Ar; = 6r; expliay;) = [coseo+ F i sin p] exp(ies),
By; = brjexp(ify;) = [coseg+ F;'i sin €q) exp(icy),
Rxj = Txj exp(ipsj) = [F}] cos o+ isineg] exp(ica),
Srj = 8x; €xp(i0y) = [F;! cos €0+ i sin 4] exp(ic.). (15)

The first two transmission factors define the step-like changes of the amplitude and
phase of the same wave in the course of the scattering event. These factors can be
used separately for each wave to determine local values of the refraction index and
the extinction coefficient or both together to obtain a hyperbolic equation of the
customary dynamic theory.

The last two reflection factors are ratios of the complex amplitudes of the trans-
mitted waves to those incident ones and are, in general, different for the two pola-
rization states. For the first and last dipole plane coinciding with external crystal
boundaries they are identical with the global ones and define the crystal reflectivity
for both polarization states.

The importance of the two local reflection factors as they are evaluated from a
single plane view-point is to provide a formal tool enabling one to ‘observe’ an actual
process of the wave field formation over the entire mode} cross-section from the lower
to upper model external boundaries. It particularly refers to a real case situation
where the second incident wave for the lower external surface in the model is absent.
The local version of the reflection factors is essential for mapping the convergence
process. This crucial process transforms the wave field from its casual version in the
neighborhood of the lower crystal boundary into its semi-periodic or periodic versions
in the neighborhood of its upper boundary. It can be, in a way, considered as the
wave field convergence to its proper mode of interaction between the EM field and
the radiating dipoles arranged in periodically spaced planes.

The convergence phenomenon in the wave field formation appears in the periodic or
almost periodic structure models for some angular regions centered for each order of
reflection around the Bragg angle. Its existence reflects a trend in the numerical so-
lution obtained to approximate the proper state of the EM field-structure interaction
for a particular incidence angle 8. This is valid only in the limit solution and can
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be expressed in analylical terms and appropriately called infinite Bragg solution. It
is equivalent to the solutions for so called ‘symmetric Bragg case’ resulting from the
dynamic theory in the Darwin and Ewald-von Laue formulations.

The actual process of the wave field convergence can be best studied by help of
the recurrence equation proposed below which relates the reflection factors derived
for the two adjoining and identical units of scattering represented by a single dipole
plane or by a set of such planes. From formula {(12) we can write for each scattering
unit the two following equations:

B, = aAgut dBya,

A::; = auA::}q-l‘l‘ b‘iB:r:j+1 (16)
which divided by sides yield the following recurrence formula as:
Raj = P where R,; = AT and Ry = e (17

The recurrence formula just derived reveals an interesting mathematical feature
of convergence, to some extent similar to that of the function cos. If the latter is
consecutively applied over any argument from the open interval (0,1) it results in
the same convergence limit equal to the real number of .739085133215 given here
with the twelve-digit precision. The recurrence formula if used the first time for the
lowest dipole plane will result in a complex number of absolute value very close to
zero. However, if repetitively applied a great number of times in an ascending dipole
planes sequence will result in the limit in a double equality equation |

Rai = Ryjs1 = R (18)

The interval of wave field convergence coincides with the neighborhood of any angle
¢ which satisfies the Bragg equation. Its extension as well as the observed rate of
convergence depends on many factors of a physical origin. The convergence limit is
found by solving a quadratic equation resulting from (17 and 18) the actual solution
of which will be postponed to the following section.

The wave field convergence gives origin to an idea of proper state of vibrations
which is defined in a unique way for a given structure and for a defined incidence
angle #. We will denominate this state: Geomelric Fields Similarity (GFS) since the
equality (18) necessarily involves all others which relate the remainiog factors:

fa’j = -Farj-}-l = -Fﬁra ij = A«j+1 = A’H B‘xj = Ba'j-l-l = Bir- (19)

It will be convenient to call all these factors, shown without the subscript 3, global
ones since they are valid for all the scattering units.
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The GFS condition represents a kind of solution of the Maxwell equations for the
periodic media which is characterized by a repetition of the amplitude ratios (factors)
rather than the EM field itself and as such may be qualified as a semi-periodic solution.
The resulting closed-form solution represents a proper state of vibration undersiood
as a limiting case for the real case where the GFS condition cannot be satisfied, at
least, for the last unit neighboring the lower boundary of a finite crystal.

In the latter case, as shown by the numerical tests exclusively, the EM field is
being gradually built up from some irrelevant state of vibration at this unit to the
values approximating each time closer the infinite Bragg solution while going up
the consecutive scattering units as illustrated in Fig. 1. In consequence, the best
approximation is reached at the very upper boundary of a thick perfect crystal.

The eflect of the wave field convergence becomes even more rapid if the absorption
takes up a significant value or if, for benefit of model testing, the value of charge
density is artificially and drastically increased. In this situation the infinite Bragg
solution is practically valid for all the units.

VII. INFINITE SOLUTION

The infinite Bragg solution is a direct result of the geometric fields similarity (GFS)
which is satisfied for all the dipole planes in the model. In other words the local
parameter R.; becomes a global one valid for all the units and the crystal as a whole:

Rrj+1 = Rrj = Rej = Rap, (20)
where the subscript B indicates the Bragg crystal solution. .

We recall again that the less stringent condition is used now for the required perio-
dicity referred to the amplitude ratios than to the amplitudes, as is customary in the
dynamic theory.

All the properties of proper state vibrations as defined by the GFS result from a
simple formula to be given now. Joining the expressions (17) and (18) we get:

Rai/Rajer = By /AL - ALy, /B =1 (21)
and requiring continuity of the polarization vectors:
A, = AT, = A:’; A, exp{—1é),
Bl = By, = By B exp( i6) (22)

we finally obtain the looked for GFS condition:
Ar B, = exp(126) where & = kdppsind (23)

is the path phase angle §, the same for all the scattering units.
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From phase-relationship resulling from the GFS condition (23), while taking into
account derived in paper Il formulas for A, and B, (eq. 33) we immediately obtain
the modified Bragg law:

ozt Br '
2rm ) (24)
with a, and B8, representing the phase shifts which both waves A:’; and B, suffer
while being transmitted through each j-th scattering unit. The mean value of the
both above phase shifts is responsible for the deviation of the modified Bragg law
from its exact version.

From the amplitude relationship of the same basic GFS condition (23} we conclu-
de that absolute values of both transmission factors A, and B, satisfy exactly the
following equation of hyperbola:

2dpisind =mA (14

arby =1 (25)

By joining the last result with that obiained in paper II (egs. 34) for the relative
phase shifts for ¢4,=ay—¢, and £g,= f,—~&. we get another dispersion-like equation
correlating these phase shifts with the inter-wave phase angle ¢, and the structure-
polarization sensitive angle €5 in a hyperbolic formula as:

SiNEqy SINEg, = CO8%@, sin’ey (26)

The equation obtained is an exact equivalent of the main equation of the Ewald-
vonLaue dynamic theory where the inter-wave phase angle ¢, can assume values
exactly equal to x for the first branch of the obtained hyperbola and 0 for the second
one in a case of the odd valued reflection order m, and vice versa for the even valued
of the latter.

In order to analyze a general relationship of inter-wave angle ¢, with all others
angles appearing in (14) and (26) we again recall to the general GFS condition (23).
Substituting there the expressions for both transmission factors A, and B,, derived
in paper II (eq.31), we obtain the following identity:

c0s(2eg)+ 1 5in(2eg) cosh(®,+ i) = expli2(6—e,)], where &, =In|FJ|. (27)

Since the absolute value of the left side of the above expression is equal unity we can
obtain the following quadratic equation for the sinh ®,

sinh?®, — 2 cot(2eg) sing, sinh®, — sinp, = 0. (28)

Solving it we get two formulas for the relationship between the inter-wave phase angle
¥, the absolute value of the inter-wave factor F, and the polarization-structure
sensitive angle ¢4 which all are interrelated through the GFS condition. The two
solutions are:
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) | I:—sinp,tanee | _ fr=1//s
sinh &, = [II: §in @y ooteg] - 2 (29)

Substituting the solution 1 into (27) we get the following double equality:

= COS (s (30)

which enables one to evaluate the angle . as a real number in terms of the introduced
dimensionless parameter y if the absolute value of the latter is not greater than 1 or,
in other words, if the angular region of the angle # satisfies a set of inequalities:

{sin(6 — €,)| < |singg) for |y] < 1. (31)
Substituting the solution II into (27) we get the other double equality:

a+d
2
which give means to evaluate the angle ¢, as a real number in terms of the second

introduced parameter z if the absolute value of the latter is not greater than 1 or, in
other words, if the angular region of the angle satisfies a second set of the inequalities:

I

il

= COS Py (32)

|cos{6 — £, )] < |coseq| for |z} < 1. (33)

The two solutions 1 and II for a given order of reflection m give rise to three
diverse ranges for the angle § separated by the two singular points. For the first of
them, called the Laue point, the parameter y = —1™ and the inter-waye phase angle
@ = 7. For the second one, termed the Ewald point, the parameter y = ~1™*1 and
the respective inter-wave phase angle ¢, = 0. The above relations are valid for both
states of polarization and corresponds to a situation in which the incident mesofield
assumes the minimum and maximum values, respectively. These two points can be
supplemented by a third singular one, conveniently called the Bragg point, for which
the parameter y disappears and the inter-wave phase angle ¢, is exactly equal = /2.
All these points for the whole range of the # angles are shown in Fig. 2.

The Laue and Ewald points give rise to the three separate angular regions for the
angle §. Within each of them we define a real valued inter-wave phase angle ¢ and
subsequently the factors A,, B, and R, which together with the F,-factor completely
describe microscopic image of the EM field in all the scattering units of the mode}. We
can trace factors such as |R,|? and |7;|? as a function of the angle # at an arbitrary
depth below the crystal surface in a form of calculated rocking curves (Fig. 1). One
of these curves can be submitted to an experimental verification: absolute value of
the R, -factor for the surface scattering unit.
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The Ry-factor is a function of path phase angle é which, in turn, depends on the
incidence angle #. This function can be obtained by solving the following quadratic
equation resulting from the recurrence formula (15) under the condition given by (16):

b“R:+ (au - ds)Rw — Oy = 0 : (34)
The two solutions are given by:
=yt -1)= exp(icos™'y) forly| <1

where the parameter y can be defined in terms of the scattering matrix elements
- du - ay
N
The formulas (20-36) are given in terms of the angles ¢, and &4 for the =-
polarization state. For the o-state both above angles are substituted by the unique
angle ¢,.
We will introduce the second and complementary factor 7,; called a transmission
parameter. It is defined as a ratio of the complex amplitudes of the incident beam
transmitted through the j + 1 unit to that transmitted through the unit j or:

(36)

Toi = A A7 (37
From (14b) we obtain the relation between both parameters as '
T,; = 1/(au + buRrjy1) (38)

and the solution of the resulting from the GFS condition (23) another quadratic
equation for 7T,

J
aa- VAT [ dos)])
to define two values of the transmission factors 7,3 and 7,3 where a new parameter
r was assumed to be
= &utds
=—c
Both parameters introduced, y and z, are always real and for the primitive scatte-
ring unit satisfy an equation of ellipse with the half-axes 1/ sin e and 1/coseq:

(40)

sin’egy® + coseg 2’ = 1 (41)

where the Laue, Bragg and Ewald points for the first order of reflection are marked
out on the ellipse by the coordinates [-1,1], [0,1/|cosgs] ] and [1, —1] respectively.
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Resuming, the Laue and Ewald points divide the entire region of the angles 8 into
two types: Ifor |y| < 1and II for |y} > 1. The phase relationship between the two EM
waves incident on each dipole plane, AJ* and B, is defined by the real-valued inter-
wave angle p, separately given for the two solution types I and II by the equations
pr = arccosy and @, = arccos z, respeclively.

We identify the type I solution, extending between Laue and Ewald points with
a center approximately at the Bragg point with a total reflection region TRR, since
the absolute value of the Rg-factor is constant and equal to unity. The positions of
these three points, all fixed in the y-scale, if given in the f-scale, depend on the two
main factors, the superficial charge density and the state of polarization, in a quite
different way.

The Laue point, for y = —1, which in the o-state of polarization corresponds to the
exact satisfaction of the unmodified Bragg law, is separated from the Ewald point by
the angular 8 distance roughly proportional to the value of charge density function.
The distance between these two poinis in the o-polarization state is reduced in size
by a factor almost exactly equal to cos(28) but is still centered about the Bragg point.
The latter in both polarization states exactly satisfies equation: ¢ = 7/2 where ¢ is
defined before the inter-wave phase angle. The latter continuously changes from 7 to
0 when passing from the Laue to Ewald points while at the same time the absolute
value of the R-factor is constant and equal to unity.

The primary extinction defined by the F,-factor with two exceptions for the Laue
and Ewald points is always present and assumes it maximum value at the Bragg point.
For the model of a single dipole planes it can be easily evaluated by the absolute value
of the F,-factor equal to: -

{Frel = (1 ~ singg)/ cosex . (42)

In the II solution the absolute value of the R,-factor, no longer a constant, is
rapidly declining in a manner predicted earlier by Darwin'. It has to be noted that
it was not changed upon inclusion of the Ewald self-consistency principle, quite to
the contrary of the conclusion arrived at by Zachariasen?®. The latter acredited this
difference between the respective curves derived from the Ewald theory to the lack of
the self-consistency in the derivation of the Darwin formula for a single crystal plane.

The EM field composed of the two beams of equal absolute amplitudes is strictly
periodic only for the {wo points, Laue and Ewald, which separate solutions obtained
for the regions I and 11. It is also periodic for all the points of the region corresponding
to the type II solution but with the absolute amplitude values of the two beams
different.

The Laue point for the o-polarization state in the primitive scattering unit deserves
a special attention. Its position evaluated in the @ scale corresponds to y = —1™ where
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the phase shift angles o and 8 are equal to 0 and the modified Bragg law, as shown
by equation (24), is reduced to its exact version. The two incident waves reach the
dipole plane with the same amplitude but with the opposite phase (¢, =7). Since in
this case there is no interaction whatsoever between the EM field and the dipoles of
the scattering planes, these latter become for this field ‘invisible’. Hence a conclusion
to be drawn is that, at least, in the above model the exact Bragg law has a purely
kinematic character.

VIII. REAL CASE MATRIX SOLUTION

We can treat now a particular but otherwise most important type of solution which
almost exactly satisfies GFS pattern over the upper and main part of a big perfect
crystal but which, at the same time, diverges from it substantially in the region
neighboring its lower boundary. This situation results from absence in the real case
of the second wave incident on the lowest dipole plane of a model, a fact which clearly
breaks GFS pattern. The latter can only be restored in the upper region of a perfect
crystal, if sufficiently thick, by an effect of the wave fields convergence. 1t is needless
to say that this type of solution can only be studied by the numerical method and
for this very reason it has been never approached.

A closed-form crystal solution valid for the above real case immediately results from
the general solution {12), if we assume that all the dipole planes are identical. The
corresponding matrix product (11) is obtained by help of the Chebyshev polynomials
of the second kind taking into account that the scattering unit matrix M, is uni-
modular and that its elements on both diagonals are in complex conjugate relation
with both properties now being extended for the matrix product M, and its matrix
elements as shown below

Gl owae | AR
bBi’i] =M [ 6‘”] where (43)
v _ | aslna(@) ~Una(z)  bulnoa(2)
M, =MV = ;Uﬂ_l(z) duUn_s(z) — U _,(x)] . (44)

The matrix elements a,,b,,c, and d, are given by (6), the variable z is defined by
(39) and the Chebyshev polynomials of the second kind are of a standard type:

Upa(z) = (45)

-2

The global value R, determined from (35) becomes a parameter valid for the whole
crystal model RS and is obtained from the equation:
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RE = B:rrl = c‘UUﬂ-ll(z)
"= AR, T aloa(@) - Uoa®)
This equation enables one to calculate the reflecting power for a crystal of finite and
arbitrary thickness as a square of the absolute valuc of R;.
The conservation of energy for the whole model is easily verified if we calculate a
crystal transmission factor defined from:

(46)

A!r 1
T’rc - m s , 47
W ayUnoa(z) = Ups(x) (47)
Both transmission and reflection factors satisfy conservation energy identity:
2
[Re 12+ 1712 = by U2 (2) + 1 s

0ud, U2 (2) — 22 Un1(2) Una(2) + U2 4(z)

The above matrix formulation of the scattering problem takes into account the
multiple scattering effects not only within the individual dipole planes but also
between the different dipole planes of the same model. The matrix method initiated
by the pioneering analysis of Abeles'® is fully described in the Born and Wolf'® clas-
sical monograph. The main difference is contained here in a definition of the matrix
elements. These latter, correctly defined by both the Hertz vector formalism and the
Ewald self-consistency satisfy energy conservation of the system, regarded without
absorption. Conservation of energy in this case, given as the sum of amplitudes squa-
red of the two incident and two transmitted waves, refers equally to ‘macroscopic’ or
global as well as to ‘microscopic’ or local scattering problems. "

The matrix method is particularly convenient for verifying the convergence of the
EM wave fields from the general to Bragg (GFS) solution in a hybrid connection of
both solutions required for the real case situation. Since both above solutions are of a
microscopic type, the approach developed enables one to identify all the components
of the stationary EM field formed by the two interacting waves at any point within
the crystal space. It is also possible to calculate any chosen scattering parameter as a
function of the angle 4 in the form of appropriate diffraction profiles (‘rocking’ curves)
for planes situated at different levels of ‘depth’ inside the crystal and within a full
range (0-90 deg) of the angle § making thus the analyzed convergence phenomenon
quite transparent. A gradual build up of the EM field, from that given by the general
(kinematic) solution, characterized by the zero amplitude value of the reflected wave
at the lower crystal boundary, to the Bragg (dynamic) solution at its surface was
shown in Fig. 1. For benefit of model testing, a similar EM field build up from the
kinematic to dynamic diffraction profile while drastically increasing the charge density
value, from the usually found value to some extremal one is illustrated in Fig. 3 for
the (111)-Ge reflection and in Fig. 4 for the two reflections (620)-Si, bordering the
angle 8 = 7 /2 on both sides.
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IX. CONCLUSIONS

The fact that the basic dynamic X-ray diffraction theories have been developed in
terms of differential equations rather than in terms of the Fourier integrals used in the
kinematic theory?® may find in this bridging type of approach a new interpretation
resulting from its two main attributes:

o The plane waves summation is carried out inside the crystal space rather than
in infinity as in the Fourier transform theory.

s It enables one to take into account the self-consistent dipoles interaction to the
overall scattering pattern making the intuitive Darwin approach fully comparable
with the treatments of Ewald and Laue.

Hf the latter is insignificant the results obtained would coincide with those obtained
by Fourier integrals. This interaction, formalized by Ewald’s seli-consistency princi-
ple, increases with number of dipoles in the correct crystal sites and contributes in
the form of non-linear terms to the overall diffraction pattern. These terms becomes
predominant in a saturation stage leading to effects such as the total reflection range.
This emerged saturation stage, a typically non-linear phenomenon, makes the Fou-
rier integral approach in describing diffraction phenomena quite inadequate. On the
other hand, the analytical-numerical procedure developed may be considered as an
extension of the Fourier transform into the non-linear yet energy-conservation area of
applications. a

The differences and similarities with the conventional dynamic theories can be re-
sumed in some points of importance:

e While the formalism developed makes use of the most important self-consistency
principle due to Ewald in all the scattering models with full rigor it follows
rather the ideas of Planck and Lorentz who let the single dipole be excited by
an electrical force, which consists of two parts, the ‘external’ one and a second
contribution which comes from the other dipoles of the body.

s The present mode! is able to match continuously those features of X-ray scatte-
ring on crystals which are separately treated by either kinematic or dynamic
theories; the aspect to be applied in the heterolayers scattering.

¢ In this model the charge density value can be arbitrarily increased without any
effect of Darwin’s ‘excess’ scattering’.
o Since the EM field attains the best convergence to its proper state of vibra-

tions at the very crystal surface, the perfection state of the latter becomes quite
irrelevant?5-28.

e Only the unit concept can make the matrix method for exact solution of the

Darwin difference equation really effective!’-!4.
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¢ The dispersion-like hyperbola curve obtained in this approach has only illustra-
tive value. However, a comparison with its current usage may be of interest:

— The dispersion-like hyperbola is derived in an exclusively analytical way in
contrast to the usual geometric arguments resulting from so-called boundary
conditions. In consequence, it is exact and suffers no restrictions (e.g. the
complex angle 8} if it is used in the vicinity of 8 = 7 /2 region.

— In contrast to conventional dynamic theories we don’t have to introduce
the index of refraction as an external parameter. In fact, it is intrinsically
built into the self-consistent approach. It can assume its proper values for
each order of reflection; it depends on the magnitude of absolute amplitu-
de of each of the two interacting waves and automatically follows all the
changes in superficial charge density if applied to scattering problems in
heterostructures.

—~ The hyperbola equation appears in the coordinate frame other than the
Fourier space. '

Our last remark to be made here is that the present results, obtained without -
any intermediary approximations and using the correct model of the radiation, may
represent the first step of a more fundamental approach to the problem of dynamic,
self-consistent X-ray scattering for more than two interacting beams.
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Fig 1

FIG. 1. Dependence of reflectivity and transmitivity for both waves on depth inside the
crystal for (111)-Ge reflection and radiation wavelength CuK,;.
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FIG. 2. Dependence of reflectivity on diffraction angle # within interval [0,110] degree
under increased charge density value by factor 10%,
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FIG. 3. Continuous transformation of the diffraction profile from kinematic to dynamic
type as a function of charge density value for {111)-Ge reflection and radiation wavelength
CuKnl .
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type as a function of charge density value (o = op x 2V) for the two (620)-Si reflections,
bordering the angle § = v/2. Assumed radiation wavelength 1.23456.10~%m.
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