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Abstract

It is shown that the spin polarization of the electron cloud in thermal equilibrium with
a ferromagnetic surface decays within a few Angstroms from the surface. This explains
the vanishing spin polarization found in thermoemission from Ni and Fe by Vaterlaus

et al [Phys. Rev. Letters 65, 3041 (1990)).
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A. Vaterlaus et al! have discovered that the spin polarization of electrons thermoemit-
ted from cesiated surfaces of Ni and Fe vanishes. This is contrary to expectation, if
one considers that inside ferromagnetic materials the densities of states for spin up and
spin down electrons differ even at the vacuum level. This letter calls attention to the
fact that thermoemitted electrons are extracted from the electron cloud outside the

surface, which is depolarized in agreement with experiment.

The electrons outside the surface are trapped by the long range image poten-
tial. The question arises: what is the spin polarization of an electron gas outside a
homogeneously magnetized ferromagnet? If the outside gas were homogeneous and
degenerate with the same density as in the inside, the answer would be obtained from
the Ruderman-Kittel® susceptibility. In that case an integration over a homogeneous
exchange coupling inside the ferromagnetic half space produces an oscillating and de-

caying polarization P(L) at a distance L outside®:

P(L) = (JNxp/?) F(2krL) ‘_

(1)

F(z) = [zsi(z) + sin(z)/z + cos(z)}/2
with si(z) = — f* dtsin(t)/t. Here P(L) is the net electron spin per unit volume, and
kr the Fermi vector. xp is the Pauli susceptibility which gives the spin density per
exchange field, xp = Dp/2 where Dp = mkgp/27%h? is the density of states at the
Fermi level per spin. J is the exchange coupling constant with dimension erg cm®, N
the density of ion spins in the ferromagnet, and m the electron mass. A similar theory
applied to a Boltzmann gas gives a positive susceptibility?. It has a Gaussian space

dependence with a range k7! = %(2mkpT)~2/2. Here kr equals the wave number of an

electron with thermal kinetic energy kpT; it is independent of the density of electrons.
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If the Bolizmann gas, with density ng , would fill the whole space, the polarization

ouiside the ferromagnet would be given by

Pg(L)=(JNxs/2)G(ksL)

] : : (2)
G(z) =e = —/7z[l - ¥(z)], &(z)= (2/\/11-')/0 dt eV,

xB = np/(4kpT)is the analog to x p for the Boltzmann gas. F(z) and G(z) are shown

in Fig.l.

Within the ferromagnet the polarization of the electron gas sﬁows also a space
dependence. In a model in which the electron gas inside the ferromagnet is subject
to an exchange field, the polarization as a linear response is that of the field in the
wh-::ole space plus that of a compensating field outside. Thus, inside, the polarization

is obtained by replacing F(z)/2 by 1 — F(|z|)/2.

It is important to realize that these space dependencies of the polarization result
from the perturbation of the exchange interaction on the spin-up and spin-down wave
functions, which lead to inhomogeneous densities in space. In particular the vanishing
polarization in the outer regions has nothing to do with spin flips or mean free paths. It
is a simple consequence of this model that the polarization decreases to zero in the outer
region. Note that a similar one-dimensional model would lead to spin polarizations at

unlimited distances®,

Outside an actual surface the electron cloud is not homogeneous. Ifit is degenerate
close to the surface, then its density and the corresponding value kg vary rapidly
with distance. In this area a functional density theory may be appropriate®. In the

outer part, the Fermi-Dirac distribution is used at its high energy end, where it is a
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Boltzmann distribution. In this case the range k7! is space independent and determines

the decay.

For the temperature T = 450 K of the experiment? , k3! = 10 A. The potential of
the image force and an extracting field E, V(L) = —e?/(4L) — Eel has a maximum at
L = (1/2)(e/E)'/2. For a field E = 1 statVolt/cm this amounts to L = IOOOA,_ which
is much larger than kz}. The electron cloud in that area is not polarized. Furthermore,
the current of thermally emitted electrons will not appreciably modify this equilibrium
distribution. Since the thermally emitted electrons emerge from this area they are
not polarized. Only experiments which probe the electron cloud at a few Angstroms
from the surface such as Electron Capture Spectroscopy (ECS)’ or Scanning Tunreling

Microscopy (STM)® could detect its spin polarization.

In photo-emission the excitation of an electron from an occupied state into an
empty state above the vacuum level takes place in the bulk. The dipole operator of
the matrix element of this transition is spin independent. Therefore the excited states,
which are only weakly perturbed by the exchange forces, are selected to match the spin

polarization of the initial states. Hence this polarization is carried into the vacuum.

It is noteworthy that the absence of spin polarization of the thermally emitted
electrons stems directly from the subtle questions which gave rise to the papers of
Yosida? and Van Vleck!® on the methods of calculation of the Ruderman—Kittel polar-
ization. We mention this because often erronecusly the Pauli spin susceptibility alone
is considered in this problem. The analysis of Yosida shows that this contribution is

exactly equal to that arising from the term k' = k in the perturbation expansion of
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the one particle state ¢,. This term must be left out in Yosida’s treatment. In view
of this, the Pauli term is incorporated into the sum, resulting in an integration with
principal parts over all k'. This then coincides with the method of Ruderman and
Kittel, in which the Fermi spheres for up and down spins are equal, but where the
integration is done with principal parts. This treatment actually implies perturbed
wave functions whose admixture is not orthogonal to the unperturbed state, so that
they are not normalized to linear order in the perturbation!). The result of the two
treatments is the same: around each point at which an exchange field acts there is
a local polarization cloud, and there is no background of long range polarization in
regions without an exchange field, as one would expect considering only unequal Fermi

spheres.
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Figure Captions

Dimensionless functions which describe the decay of the polarization of a degenerate,
F(z),and non-degenerate (Boltzmann), G(z), electron gas outside a ferromagnetic half

space, where the dimensionless variable z stands for 2k L or krL, respectively.
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