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ABSTRACT

We extend to the anisotropic case (not necessarily equal coup
ling constants-along'the various crystalline directions) the real
.8pace renormalization group broceéure recently introduced by Ca-
ride and Tsallis, which directly yiélds_the order paraheﬁer for
arbitrary temperatures. The method does not demand the calculation
of the thermodynamic energy, it is as simple as a mean field cal-
culation althouéh it provides non trivial results, which can be
systematically improved. Within the present exfension,-the coordi
nation number of'ény given site is generalized into a suitable a-
verage of the coupling constants involving that site. We apply the
procedure to the g-state Potts,ferrémagnet in anisotropic sguare
lattice, whose exact equation of states is still unknown. - Whenever
possible, the results compare satisfactorily with available exact

results,

Key-words: Potts model; Renormalization grouwp; Equation of states; Anisotropic

square lattice.
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1 INTRODUCTION

Real space renormalization group (RG} techniqueS'ha§e been lar
gely employed to evaluate critical points (phase diagrams) and crl
tical exponents. In general, these procedures have been.used to de--
rive relevant quantities in the vicinity of the critical points.
There is, however, no fundamental reason for not using'these tech-
niques far from the critical regipﬁ?’esPecially if we are looking
for approximate results. Indeed RG formalisms are avaiiable[1'2]
for calculating the relevant thermodynamic energy for arbitrany va-
-lues of the external parameters (temperature, magﬂetic field, etc.);
from it, quantities such as the spédific heat, equation 6f states
and susceptibility, can be obtained through the.standard thermody-
namical relations.

(31 a RG formalism that enables

It has been recently introduced
the (direct) calcﬁlatiqn of equations of states for geometrical sta
tistical systems, ;which cannot be described within a Hamiltonian
framework. Along the same lines, Caride and Tsallis[4] have now
proposed a RG method which allows, for theamal statistical s&sums,
the direct calculation (without going through the calculation of
the thermodynamic energy) of the equation of states for 'arbitrAfy
values of the external parameters. Tﬁe system which was focused by
Caride and Tsallis is an {sotropic one in which the coupling con-
stants involved on every site are one and the same. Consequently
the coordination number plays an iﬁportant role since the order pa
rameter is locally proportional to this number  (in fact, ﬁﬁiﬁntfds
type of approacﬁ the Bravais 1attice, translaticnally invariant, is
approximated by a suitable hierarchical lattice, scale invariant).

In the present paper, we extended the formalism to anisoinopic sys

tems; within this extension the coordination number is generalized
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into a natural average of the coupl;ng constants invqued in any
given site. As an application of this procedure we calculate an
épproxgmation for the still unknown spontaneous order parameteyr
of the g-state Potts ferromagnet in anisotropic square lattice (ar
bitrary coupling constants J# and-Jy). The g-dependence (exactly
known) of the critical exponent B and the ¢- and Jy/Jx?degaxkﬂﬁes
(still unknown for q#2) of the critical amplitude are particular-
ly focused.

In Section II we present_thé formalism and its application to
the potts model; in Section III we present the results, and final .

ly conclude in Section IV.

II FORMALISM AND MODEL

ﬁe'consider a d-dimensional simple cubic lattice of linear si
ze L, and assume that first-neighboring sites interact ferromagne
tically, the d@ (dimensionless) coupling constants being K, =T /kpT
(a:x,y,z,.f.), where Iy 20 is the coupling cohstant along the o~
axis and refers. to Ising,. xy, Heisenberg, Potts models or similar
ones. Whenever ordering of the coupling constants becomes . conve-
nient we shal} use the convention Jx ZJY sz e

The order parameter M.is defined as MEENL(Kx,Ky,Kz,}..}/ﬁd ip
the L »® lihit, where NL(Kx,Ky,Kz,...) is the thermal average num
ber of sites whose spin is pdinting along the easy magnetization
directian (for_instancc,mthc.atﬁl~5tate.fn:htha_Ratts.*ihrnamgweLi
minus_ those whose spin is pointing.in the other directions ‘__(_i”.e., °i=-.2;’-
..;,q). We associate with each site of the lattice an elemeﬁtary

dimensionless magnetic dipole ¥, which will be a renormalization
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variable of our transfeormation.

We renormalize the original system into a system of linear si
ze L'(B = linear expansion factor =L/L' >1) and associate to the
new system the renormaliged variablgs K;, K;, K;,... and uy', which
will erend on K_, Ky, K, ree. and yp. Through renormalization the

total magnetic moment of the system must bg.p&eée&uad, i.e.

NL.(K;,K;,K;,...)u' = NL(K*,Ky,Kz,.;.)u {1)

We now .divide both sides by Ld and obtain

d (2)

M(K;fK;er;l'..‘l)u' = M(Kxf-Ky'Kz"..)uB

K peas) ENL.(K;,K;,K;,.a.)/L'd. If we start with
(o) ‘

where M(X',K'
x ¥y

K s Ky, K ro.. and u and iterate n times we obtain

(n) ,(n) ,(n) (n) . . (o) _nd
H(Kx 'Ky 'Kz !"_')l-l- - M(Kx,Ky'IFz'-_oo)u B

which yields, in the n-+« limit,

l_l(ﬂ)

fous)

M(K(“),K(“),K:“)

M(K ,K ,K ,...) = 1lim X ¥ _ _
x'Ty e’ noo g%d (3)

where we have arbitrarily chosen H(O)?l-

Together with Eg. (3) we will use the RG recurrence egquations
for {K&}. Thesc equations will typically give rise to a critical
frontier in the d-dimensional parameter space. This critical sur-
face wil) partiéion the space in two {or more) phases, namely the
disordered phase (péramagnetic) attracteé, uﬁder renormalizatidn,

by the stable fixed point Kx=Ky=Kz=...=0, and the ordered phase
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(ferromagnetic) attracted, under renormalization, by the  stable

fixed point K, = KY = Kz = ...+, In the paramagnetic region we have

that M(xi""),xim),xi“),...) = 0, which, through Eq. (3), implies
: (n)

Mij,Ky,Kz,...) = 0 (we shall verify later on that £im “nd does

N B
not diverge). On the other hand, in the ferromagnetic region we

‘have that M(Kim);xim),xgw),...) = 1 (convenfional value for - the
order parameter of the completely ordered system}, and consequen-
tly

y(n)

M(Kx'Ky'Kz"'°) =,§iﬁ S T (4)

This is the central formula of the present formalism as it'yields
the order parameter for arbitrary values of {Ku}. To close the
: operafional_procedure"we must now produce.the. RG. recurrence equa
tions for.{Ka} and u. We shall illusﬁraté this for the anisotrcpic
sqﬁg;é lattice.

We shall adopt the cluster transformation [3] indicated —in
Fig. 1. The two—}ooted graphs appearing therein are.self-dual, and
therefore very suited for the square lattice (as already proved
in many other similar problems).

Before going on let us make a few comments concerning the di-
visor Bd appearing in Eq. (4). As we are in fact now replacing the
Bravais lattice by an hierérchical 6ne, this is a convénient‘pdace

for stating.that gd

will be approached by Bdbb' defined in what
follows., |
If we were interested only in the isotropic case (Jx =Jy) we
- would renormalize“thé_gwo-rooteq,gxapn.G}with.chemical;distance~b<
beﬁweén the roots; b = 3 for Fig. 1(b)) into the graph G' (with
chemical distance b' between its roots; b' = )} for  Fig._ 1(b),

hence B = b/b' = 3}. The graph G generates, through iteration,an
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hierarchical lattice with intr;nsic fréctal dimensionaliﬁy[6'7]
db'z'tanftnb (@, = £n9/£n3 = 2 in Fig. 1{(b}); analogously G' 1is
to be associated with d,, = Ian,/an'_(Nb; = b' = 1 in Fig. 1l(b)
which leaves indetermined db,; nevertheless it can be shown that
=1); N

the correct answer for this trivial case is d and N

b' b b'
respectively are the number of bonds of graphs G and G'. -It is

convenlient to define the dimensionality dbb" through

d

B ®" = m /N, . (5)
hence

BB _.b_db/b-""b" | (6)
hence

dbb. _ dblnb - db.Lnb'. 7

£nb - £nb'

Note that dbl = db’ If graphs G and G'have been consistently cho-

sen to approximate the d-dimensional Bravais lattice, we:nnnﬁexpect

Lim @& = £im @ = d,
b »+x bb' b+ b
b'<h

In the anisotropic case (arbitrary Jx-and J&) we may extend -de
finition (5) into

®
b

X Y ) '
Nb' +Nb'Knyx

. y ’
bb! Ny, * Nbe/Kx {8)

v}
n

where Ny and Nz (N:. and Ng,) are the numbers of bonds of G (G')

respectively assoclated with K_ and K_ (K' and K')}. Definition (8)
X Y X y

recovers definition ({5) in the following particular cases:
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(K /K, KI/K:) = (0,00, @ , 0, (0,1} and (1,1). Definition (8) is
the simplest continuous express;on which does so, Naturally'dther
similar alternative definitions can be introduced for purposes we
sﬁall discuss later on. For example, for the q—satate pPotts model,
we can introduce

d TNx'+NZty/tx

'
B bb = b

x Y 4 '
Nbl +Nb tty/tx

{8')
where the t's denote Zhe&mat't&anémiééiuitieé[s’g} defined throuach
t = (1-e"%) /(14 (g-1)e” %] e [0,1) .

Let us now come back to the determination of the recurrences
for {Ka} and u for the. g-state Potts ferromagnet. We impose that
the correlation function between the two roots of the graphs must

be preserved, 1l.e.

L P rr e~Pi23456 (9)
3,4,5 6

Where'. in Qur case (Ui = 1,2,.-.,q,v1) '}

1

" qK;dol o, + Ko | (10}

(Ko 1s an additive constant to be determined} and

- Baf)

123456 é qu(GG + 6 | - + & 6 }

L'03 UL,U6'!_- 05_’06 v U@ + o

' qKY(G“x.-"’.e ) ds"3.*""5 ) 5"5?"2 ' 604'06) ' .
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“Piz and HP123456 respectively being the Hamiltonians of the small

and large graphs c¢f Fig. 1l(b). Eduation (9) unigquely determines

=
o om
H

f(Kx'Ky) (12)

hence

=
o -
[}

f(Knyx) ; {13} .

where we have used the Xy ;nvariance of our lattice.

Let us now establish the equation for u by foliowing along the
lines of Ref. {4]. In order to breaﬁ the symmetry we assume one -of
the roots of the graphs to be in a fixed state, say ¢;=1. We con-
'sider all possible configurations for the other sites, i.e., g (@*)
configufations for the small (large) graph, as well as the . corre-
sponding Boltzmann weights and the assoc1ated magnetic moments. The
magnetic roment m associated with a given conf:.guratlon is obtained by .adding
all site contributions, each of themlbeing pr0portional to the a-
vénaga coorndination number, defined by attributing to each bond - a
weight proportional to its coupling constant (if we adopt -defini-
tion (8)), or analogously proportional to its transmissivity'(rfﬁe
rather ad0pt-definition (8')); see Téble_l for the spin-1/2 ising
particular case (g=2). The.present definition for average coordina
tion number is the simplest continuous one which recovers that of
the isotropic case (namely the standard coordination number) in
both particular cases K /K =1 and K /K =0, Finally we impose, ﬁs
we did in Eq. (1),

<> = <m> (14)
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where <-++> denotes the canonical thermal average. Eq. (14) has

the form
B' o= g(K Ky (15)

where g(Kx,Ky) is a continuous function which satisfies g{wo,e)=
p bb’ >g(0,0) >0. The determination of the function g(K ,K ) de-
mands the construction, for arbitrary ¢, of a table such.as . Ta-
ble 1 where we must take into accoﬁnt the fact that the Potts or-
.der parameter is.proportional to (q<&Ui 1>—-1)/(q—1). In general it
is g(Kx,Ky}'ﬁgle,Kx) (e.g., the large cluster of ?ig, l(b[ has
five Kx-bondshbut-only four Ky-bondé). An undesirable consequence
of this fact is that in general the present RG approximation will
be not invariant undef'Kx;I%r pérmutatiop, as it should. The d;s;
crepancles are however very small (e.g., at most 3% between the
q=2 cases for Ky/Kx=0.5-and Ky/Kx=2) énd should vanish in the bow
limit, v

Summarizing the method, to determine the spontaneous magneti-
zation we are looking for, we have to use Egs. (12), (13), (15) and

{n)

M(K ,K ,.0.) = 1im—-E-J~— (16)
Xy n-reo B“ bb!

which.approximates Eq. (4). Equation (16) can alternatively be re

written as follows:

M(K ’K 'ooc) = 1il'l'l H d 4 L*=2 (17)
x y . n+o ‘e’-o B bb! .
where we have used (d)-l d (o) _ -
H =l and K "7 = a {a=%X,¥;++.). In the present
-
bb

application it is B =5+4Ky/Kxf
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III RESULTS

The results we have obtained for"the spontaneous magnetization
for q=1,2,3 and 4 are presented in Fig. 2 (isotropic case Ky =Kx)
and Fig. 3 (anisotropit .cases for typical values:-fqr the. ratio rE. Ky/Kx)'
In Fig. 3(b) comparison is done with the exact answer(1%}, for in-
termediate temperatures and typical ratios the error is of the'or-—
der of 10%. For the g=1 particular case we have pre’sentedv,' in Figq.
4, our resulﬁs in the standard manner for bond percolation (pas

=X . .
l~e % with a=X,Y,-..) With n = (l_—py)/(l—px); we have compared with

other RG results[-3], the exact answer being yet unknown,

In the neighbourhood of the critical point, the mac:;netizati'on
is given by M —A(l—T/T.c)B. The present RG recovers the exact T, foxr
all (q,ri (this comes from our choice of £e£5-dua£ gravhs). The ap

proximate exponent £ is given[“ by

d, ., | -
ta[B ®® /g(k_,K )]
g = e’ e (18)
£n(af (K ,K) /dK]
c

B depends on g but not on the ratio r(r#0). This is as expected on
the basis of universality arguments, and has been illustratéd; for
q.-'3, in Fig. 5. The numerical values for B are presented in Table 2

[11]

and compared with the exact results '« Though the numerical dis-

crepancies are accebtable, wenferify an inoorrect tendency to increase (instead

of decrease) for increasing . However  this error possibly disappears ‘in the b=

limit, as verified in Ref. [4] for the isotropic case and b=2,3,4. The
values we have obtained for A for typical values of (qg,r) ‘are in-
dicated in Table 3. Compariéon with exact results is possiblé only

for g=2: the discrepancies are unexpectedly small.
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IV CONCLUSION

A real space RG scheme has been formulated which, for the first
time, enables a simple and'direct calculation of the equatibn of
states of anisotropic magnetic systéms._lt is based on the inspec-
tion of the spin configurations of small clusters, a fact which con
siderably helps intuition. The method is operationally as simple as
a mean field calculatipn and can be used for arbitrary temperatu-
res; the resuits are non trivial and can be systematically improved.
At the microscopic level all quantities introduced Vary. softly with the
external parameters such as temperature and anisotropy. Neverthe-
less, at the macroscopic. level, the expected usual diﬁcontingie
ties, such aé crossover -~ phenomena, are satisfactorily described.

We illustrate the progedure through the calculation of the spon
taneous magnetization of the g-state Potts ferromagnet .in aniso-
tropic sqguare lattice, a problem.which is yet unsolved for g#2. We
use the g=2 known exact results to test the quality of the method.
Satisfactory agreement is obtained, speciélly for the éfitidal am--
plitude. As a restriction we must mention that the present forma-
lism sﬁ%res with similar types of methods the not recovering of
first-order phase transitions which are known'tb occur for d=2 Bra
vais lattices for g high enough (in fact, q>4).'To_overcome ‘this
difficulty, an enlarged parameter spacé possibly neéds to be intro
duced[lzl. In any case the present résults aré correct for thé hi-
erarchical lattices which are used to approach the Bravais lattice
under study.

We acknowledge useful remarks from.A.C.N. de Magalh&es, E.P. da

silva, L.R. da Silva and A.0. Caride.
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CAPTION FOR FIGURES AND TABLES:

Fig. 1 - (a) The self-=dual cell transformation used in the present
RG to renormalize Kx {the arrows denote the "entrances“
and "exits"j, (b} the corresponding graphs G and G' (o
and e respectively denote the roots and internal sites)

Fig., 2 - Magnetization as a functiqn of the temperature for the iso.
tropic case, for typical Qalues of q. |

Fig, 3 - Magﬁetization as a function of the temperature, for various
ratios r =-Klex: {a} g = 1; (b) q =32 (the dashed curves
are exact[lol); g = 3; (d} g = 4.

- Fig. 4 - Probability P_ of a bond to belong to the infinite cluster
as ; function of the concentration p, =1~ e—Jx/kBT of
‘"horizontal® bonds, for fixed n = (1-pi)/(l-px). For n =
0.5 and n = 1 we compare‘our curves witﬁ the results (dashed)
of da Silva et aljs]

"Fig. 5 - q= 3 model. (a) Amplitude A ~ M/(1-T/T_)® as a function

| of the temperature, for typical values of r= K?/Kx.

is defined through the construction indicated

T
crossover

by thedashed lines). (b) Dependence of Térossover on the

ratior = K /K
y X

Tablel - Estabishement of eq. (14) for the anisotropic Ising ferro-

magnet (q = 2). We have used

Ho=- J..0.0,.(g. = +1) rather than
<iyi> bl
= - q J..é -
P <i§j> ij ci,cj(oi = 1,2,...9)

' '
(a) an>., = 2u'efx/(eXx 4 o Kx)
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Table 2 -

Table 3 -

-]2-

(b} Only 7 amng2'5= 32 possible configurations have been re

presented: <m> = (e Kx+ oK

G Y(10 + 8Ky/Ky) +

K : 3K, +2k
2e X (6 +4Ky/Kx) + ?e x y(8 +6Ky/Kx) +

K+ 2K -3K,-2K
e Y (6 +6Ky/Kx) + e Y(-2—2Ky/Kx) + .-1)H/

(eSKx+4Ky + z'er + 2e3Kx+2Ky +er'l‘2Ky + e—st,—zKy + u. .)

Present RG résults for the critical exponent B8 and the
corresponding exact values.

Present RG results for the amplitude A of the magnetiza-
tion (the exact values for g=2 are presented between paren-
theses). In the q =0 limit; due to' : precision limita-

tions we cannot affirm that A is independent of r.
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~18~

(u') |
6'configuration weight m
{
e Kx 2y
{
y
e Nx 0

TABLE 1
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[

6 configuration weight m
o Kx + 4Ky (10 « 8Ky/Ky ) p
o Ky (6 + AKy/Ky)
30 2Ky (84 6Ky/Ky) p
ot 2y (6 + 6Ky/Ky) p
o~ 3Kx - 2Ky (-2 - 2Ky /Ky

TABLE 1
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o J1
q 8.(RG)_' B{exact ™)
o 0.10 1/6 =0.167
1 0.152 5/36 50,139 |
2 0.168 1/8 0.325 |
3 '0.178 1/9 =0.111
4 0.187 ~ |1/12 =0.0833
« |2n(9/5)/4n5 =0,365 —
TABLE 2
x 0 R 2 3 4
b Y S
1 1.1 1.1 | 1.21 1.24 1.26
(1.22)
0.8 1.1 | 1.18 1.22 1.26 1.28
(1.22) -
10.4 1.1 | 1.21 1.28 1.32 1.37:
(1.23)
ok | 1.1 |27 | 1.37 1.44 | 1.51
o (1.26)

TABLE 3 -
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