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Scattering of the two harmonic EM plane waves by a plane of induced dipo-
les has been rigorously treated by means of the Hertz vector. It is shown that
single plane solution may be used as a unit of X-ray scattering in the two-beam
symmetrical Bragg case. This solution, given by a complex unimodular scattering
matrix completely defines an interaction mode of the EM field with the single
plane of dipoles for both states of polarization. The complex transmission coeffi-
cients derived determine step-like changes of phase and amplitude of both waves.
In two particular vibrational states, when the two incident waves arrive at the
dipole plane with the same or opposite phase, the actual phase shifts display a
behavior predicted by the dynamic theory. However, as the relationship between
two states is obtained in an exclusively analytical way, the customary geometrical
arguments became redundant. It is shown that only a self-consistent solution,
which includes cooperatives effects among scatterers, is able to conserve energy.
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I. INTRODUCTION

In a previous paper’ (called paper 1) we proposed a new method to evaluate the
self-consistent interaction between a plane of induced dipoles and a single harmonic
EM plane waves of the o-polarization. The concept of self-consistency, introduced in
the Ewald papers?, was carried out by including in the total forcing field the field due
to the induced dipoles of the scattering plane. This latter field outside that plane
becomes two traveling waves outward the scattering plane, but inside that plane their
mean and stationary value is summed with the field of the incident wave to form the
total forcing field. The method efficiently calculates induced dipole vibrations in
their proper self-consistent state by means of the Hertz vector formalism without
approximations and with the transverse component of propagation included. The
one and only assumption used, of dipoles vibrating without energy loss, was enough
to guarantee that energy was conserved for the whole plane.

In the present paper we verify the new method within a more general scattering
model involving two symmetrically incident harmonic plane-waves of independent
elliptical polarization. The objective of this work is to show that the single plane
solution may be used to handle all the X-ray scattering problems for the symmetrical
Bragg case®. The crystal model is regarded as a stack of identical and equally spaced
dipole planes of continuous and constant charge distribution. Diffraction on any set
of such planes will involve then a second incident wave for all planes in the set except
the last. One of these planes, filled up by the incident and transmitted EM waves on
either side, which are in a self-consistent interacting mode with the plane dipoles, is
regarded as a scattering unit. .

The scattering unit concept is made possible by the bare results of the Hertz solu-
tion, verified now again for the two-wave model. These results are:

o the dipole fields are formed as a plane waves immediately a.fter,t.he take-off,
o they are propagating in the direction of the respective incident waves.
The last conclusion which excludes the presence of waves propagating in other

directions than those defined by the incident waves also determines that the scattering
by a stack of parallel dipole planes is an exclusively two beam case.

II. SCATTERING MODEL

In an orthonormal coordinate system, where the scattering plane is the plane defined
by = =0, we calculate the outgoing dipole fields for a point P = [xp,yp, zp] outside
that plane. We assume that the dipole plane is uniformly filled up by scatiering
electrons which behave as classical harmonic oscillators, vibrating without energy loss.
The surface density of electrons distribution is described by 6¢. The two harmonic
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EM plane wave A ** and B " of an arbitrary elliptical polarization are symmetrically
incident on the dipole plane at a general angle 6. The electrical parts of the waves
are given by

Ei(F,1) = (A" + A7) expli(wt -k -
ElF,t)= (Bi*+ Bi*) exp| z'(wt—kg‘ :

T,

)] " =k[ sin#,cosd,0]
)]}where{ kit = k [~ sin 0, cos 4, 0] (1)

are wave vectors with magnitudes k = 2x/) of the incident waves A™ and B'",
respectively. The polarization vector componentis parallel to the plane of incidence
are denoted by K;" and ﬁ:r" while the components perpendicular to that plane, by
ﬁ:';‘ and ﬁ;"‘ Each of these polarization vector components may be represented as
a product of a complex amplitude which includes a phase and a respective versor
indicating direction of vibration according to the following equations.

A7 = ATén,, Al =|Al|exp(ial), éar = [cosb,—sind,0],

A7 = ATérs, AT =|A}|exp(ial), ér0 =[0,0,1),

Bi* = Bi"és,, B" = |Bi*exp(ifi"), épn = [cos0,+5inb,0],

B = By'és,, B =|Bl|exp(if"), és. =1[0,0,1], @

whcre the initial phases of the two waves A*™* and B in both states of polarization:
(@, of"} and (Bi", Bin), respectively, are included into complex values of all the
amplitudes. These la.tter may be considered as vectors at complex piane and in this
form will be used for graphical representations.

II1. DIPOLE FIELDS

To find self-consistent dipole fields we follow the Hertz vector method applied in
paper 1. The solution presented there was obtained in two stages. » At stage 1 the
scattering was regarded as due to radiation from classical dipoles activated by an
external field exclusively. The conclusion reached there was that the combined dipoles
field take a plane wave form immediately with the two wave vectors identical to those
of the incident field ( k% = kit and k& = kil ). At stage 2 it was assumed that fields
of neighboring radiating dipoles were also included by extending the dipole fields
over the scattering plane itself. The assumption made was that the total forcing
field includes a mean value of the self-consistent dipole fields. These traveling dipole
fields were observed in two points separately for P+ = [zp > 0,yp, 2p] and for one

=[zp<0,yp, zp) on each side of the scattering plane. At the plane itself, however,
they were counted as a part of the total forcing self-consistent field defined by its
resultant polarization vector f‘,d(d,t), (é = [0,y, z}).
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To simplify matters, we start calculations at a point related to stage 2 of paper 1. We
will derive the dipole fields at the two observation points P+ and P-, presupposing
presence of these fields in the total forcing field. In other words we look for proper
solutions of the dipole fields in only one step. The infinitesimal dipole moment at the

point Q is given by
dM(Q, 1) = (*0o/mc*k?) exp|i{wt — ky cos 8 ) | dydz F,., (3)

where l-i".c;, a total or resultani polarization vector, is the sum of all the polarization
vectors involved: '

Fo;=A"+B" +1/2 <A%4+ B*> (4)

and where A% and B¥ are the solution polarization vectors of the dipole fields. The
last term in the sum indicates a mean value of the expected discontinuity in the
resultant dipole fields at the plane of dipoles, in a treatment analogous to that of the
standard Fourier Transform theory?. The z—, y— and z—vector components of the
polarization vectors are given by

A% =A% + A% + AY,
BY = BY + BY + B (5)

No assumption is made concerning polarization of these fields. Ajs before, each of
these polarization vector components may be represented as a product of an amplitude
and a respective versor indicating direction of vibration.

Al = A%, AY = |A¥|expliaf), BY =BI%, BY =|BI|exp(if),
A¥ = A%y, A¥ = |A¥|explial), BY =By, BY = |B¥|exp(if¥),
AY = Af3, A¥ =|Af|expliad), BY =B, BY =|Bexp(iff). (6)

It will be convenient 1o express the polarization vectors of the two incident waves
A™ and B™ also in terms of their z—, y— and z—vector components for which the
above set of equations may be opportunely used by a simple substitution of the
superscript di by the superscript in.

We will calculate the resultant Hertz vector at the observation point P, due to the
whole plane of dipole oscillation which is defined by

N

(P,t) = —rck ™20 exp(iwt) / / R'exp[ik(R + ycos 8 )] dydz F,;, (7}



CBPF-NF-027/93

by

where r, is the classical electron radius and R = P — Q. Throughout this paper we
use CGS units. We refer for actual calculations of the resultant Heriz vector to paper
1. Here, we give the final result,

Z(P,1) = ik, exp{ilwt — k(| zp|sin 8 + yp cos 8)] } F, 4,
where fp = re00)/58In 8 (8}

is defined as the plane scattering factor. The respective resultant electric vector is
obtained from the first of the known relations

-

E(P,1)=V(V-2)~cZ,
BB, )= cIVxZ (9)

which used at the observation point below the scattering plane P+ gives the
following expression

E(P* 1) = (A%% + Ad' + A%3) exp|i(wt—kzpsin@—kypcos8)],
A% = if,[AT+ B cos20 +1/2 <(A%+ BY)cosd — (AY + By} sin 6> ] cosb,
A¥=—if,[ A"+ Bi" cos20 +1/2 < (A + B ) cos 6 — (A + B} )sin 6> ]sin 6,
A¥ = if,[AP+ B +1/2< A%+ BY > (10)

)
5

and a similar one for the observation point above the scattering plane P-

-
—

E(B-,f) = (B¥x + By + BY'2) expli(wt+kzpsinf—kypcosd )],

BY = if,[Bi"+ A c0s20 +1/2 <(BE+ A¥)cos6 — (By + Ay)sin 0> ] cos b,
Bé= if,[Bi"+ AT cos20 +1/2 <(By+ A¥)cosb — (B + A¥)sin 0> ]sind,
Bé= if,[Bi+AV]+1/2<BI+A¥ > (11)

In both expressions the solutions fall into two groups, one of which contains only the
components parallel to the plane of incidence (indices z,y and 7} while the other
contains only those perpendicular to that plane (indices z and ¢). These two kinds
of vibrations are, therefore, independent of one another.

In the first group we observe that terms which appear in the brackets [---] in (10)
and (11) are equal in both expressions and multiplied by the factors such as cos 8 and
+6ind. The only conclusion to be drawn from this fact is that they represent the

amplitudes A% and B¥ of the x-components of the respective polarization vectors
A% and B%.
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¥ respectively identical with A%
and B%, represent the amplitudes of the o-components of the respective polarization
vectors A% and ﬁff.

Between z—,y— and z-components of the polarization vectors on one side and #-
and o-components on the other we have the same relations as between the respective
components of the polarization vectors defined for the two incident waves. We obtain
the following set of equation

In the second group, the amplitudes A% and B

A% = A% cos8, BY = B% cos, )

A¥ = A¥sinf, BE =B¥sind,

Af =AY, BY = BY. (12)
in which the superscripts di substitute their equivalents in in an analogous set of
equations (not given) for the incident waves,

As no restrictions are placed on the observation points, we can make them variable,
equaling both to I and the expressions (10) and (11) assume a simpler form with

E%(F,t) = (A%¥&xr+ AFé,, ) exp|i(wt—kzsind—kycosd)] for z >0,
where A% =if,[A" + Bi"cos20+ 1/2 <A¥ + B¥ cos 20> ], |
AY =if,[A"+Br +1/2<A¥+B¥>] and (13)
Ef(F,t) = (BYép,+ B¥ép,) exp[i{wt +kzsin0—kycosf)] «for z <0,
where  BY =if,[B" + A" cos 20+ 1/2 <B¥ + A% cos 20>,
B =if,[B"+A"  +1/2<BF+AY>). - (14)
Since kx - A¥ = Ka - ﬂf = kg - Kff = kg - A¥ = 0 the combined dipole fields

assume the form of two traveling plane waves defining harmonic electric vibrations of
’

)] k¥ =k[ sin#,cosd,0)]
h 0 1
11 [ e = k[ sin 6, cos6,0 )

The first expression represents now the dipole wave A%, for z > 0, traveling in the
direction of the incident wave A™. Likewise, the second expression defines the dipole
wave B#, for z < 0, leaving symmetrically the scattering plane in the direction of
the incident wave B ™,

transverse type.

EY(F 1) = (A% + A%) expi(wt -k -
Bg(F,¢) = (B + BY) expli(wt—kg -

b I 1

Following paper 1, we can repeat parallel calculations for magnetic vectors to ob-
tain analogous results, that the magnetic vibrations are also transverse. Thus, the
conclusion that two dipole waves are truly electromagunetic traveling plane waves re-
sults from the Hertz vector formalism. In order to calculate the actual values of the
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z—,y—, and z-components of the dipole fields we have to resort again to the Ewald
self-consistency principle.

IV. SELF-CONSISTENT SOLUTION

The idea of self-consistency is being carried out by including in the total forcing
field the mean and stationary value of the two traveling dipole waves extrapolated on
the plane of the scattering dipoles. Within that plane are valid expressions:

El7(Q.0) = Ef Q)+ EF (Q.1), .

El7(Q.0)= BLIQ.0)+1/2 < B{(Q.0) + EZ (Q.0)> (16)
the first of which represents the forcing field calculated in a conventional way (subs-
cript con) and the second one stands for the self-consistent forcing field which inclu-
des also a contribution of the dipole fields {subscript scf). We can make the same
observation, as in paper 1, that the self-consistent dipole fields are related to the
self-consistent forcing field in exactly the same way as their conventional equivalents
are related to the conventional forcing field. This relationship between the respective
dipole fields is determined by the same ratio of amplitudes and by the same phase
shifts, as it is shown by the two following expressions the first of .which represents a
self-consistent way of calculation and the second a conventional one

"fPEsc_f(Q’t) EAsc_f(Q’ ) Blcf(Q’ ) " (17)
if, El(Q,1) =E%.,..(Q,1) =EF .,.(Q,1). (18)

Since the second of the above relations is valid for every point within the dipole plane
and for every moment of scattering, defined by variables Q and 1 respectively, we look
for a solution which refers to the amplitudes of the polarization vectors exclusively.
This solution can be conveniently separated into its £—,y— and z-¢omponents. By
taking into account expressions (10), {11) and (12) we obtain the following relations:

1/2 <A¥ + B¥> =if,[A" + B +1/2 < A¥ 4+ B¥ > ] cos®0
1/2 <AJ +By'> =ify [A] + B +1/2 <AY + B> ]sin’d
1/2 <A¥ + B> =if, [A" + B" +1/2 <A¥ + B¥ > ] (19)

from which the above components of the polarization vectors are found by help of

coeflicients f,., f, and f,, defined by:
f. = isine g exp(ie;), & = arctan(f, cos?d),
f, = isine, exp(ie,), €, = arctan(f,sin’8),

f. = ising, exp(ic,), € = arctan(f, ). (20}
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The self-consistency relationship between the amplitudes of the incident and dipole
ficlds is illustrated by Fig.1 on which a similarity in behavior of the conventional
and self-consistent fields, represented by the two expressions (17,18), is geometrically
illustrated for only z-components of the fields.

Finally, the expression for the mean and stationary value of the electric part of the
self-consistent dipole field generated within the scatiering plane is given by

1/2 <EF(Q.)+ E§(Q,t)>=
1/2[(AZ+ BY) %+ (Ay'+ By) ¥+ (AL + BY) 2] expl i(wt — ky.cos 8) ]
with A =B = f(A7+B]),
A¥ = BY = f,(AI+ B}"), .
A% = B¥ = f.(A"+ BP). (21)

The factors f;,f, and f, may be looked upon as components of a new self-consistent
plane factor defined as an operator valid at the complex plane

f, = If.,f,.f.). " (22)
Since the expression (21) can be also ratified for the magnetic part of the sell-
consistent dipole field generated within the scattering plane, the operator ?, transfor-
ms the stationary incident EM field into its respective stationary dipole equivalent.
The stationary dipole EM field gives rize to the two traveling dipole waves A% and
B#. The amplitudes of the o-components, A% and B%, of the polarization vectors
of the latter are already known while the amplitudes of the 7-components, A% and
B¥, of these polarization vectors may be obtained from the expressions (12), (13)
and (14) as

Af = fz(Aiﬂ+ Biﬂ) + fv(Afrﬂ - Birn)a
. R , . . ’
BY =f,(A"+ BI") — f,(A"— Bi"). (23)

The solutions obtained for the dipole fields represent four EM waves which are
formed immediately and are leaving symmetrically the dipole plane at the same angle,
equal to the incidence angle 8.

The first pair of dipole waves, A¥ and A%, is traveling in the direction of the
incident waves, A" and A, The second pair of dipoles waves, B and B%, is
traveling in the direction of the incident waves, Bi* and Bi*. The dipole fields do
not exist independently. When added to the incident waves the four transmitted
waves AT, A", B and B¥ are generated according to

E{(F,t)=(AY+ AY) exp|i(wt—k{ - F)] tr = Rip = K4
-y ..* _‘O' i s ! - 2
ES(F, )= (BY + BY) expliwt—kg -0)] [ | kg = kg =ky Y
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represent the two wave vectors. The corresponding four polarization vectors are

AV = (A4 A¥)én,, AT = (AlP4 A%)éy,,
B" = (B"+ B¥)és,, BY = (B"+ B%)ép,. (25)

The self-consistent solution admits no waves that could leave the scattering plane
at an angle different from that defined by the incident one. As a consequence, the
scattering by a plane of dipoles is exclusively a two-beam case. The results obtai-
ned here also shown that scattering by a dipole plane of two beams with arbitrary
polarization can be decomposed into the two independent vibrations:: perpendicular
(index o) and parallel (index =) to the plane of incidence. Accordingly, while general
considerations with regard to the scattering model itself are the same, numerical re-
sults will differ. The angle & becomes identically equal to 0 in all the corresponding
expressions for the o-polarization with one exception of the expression for f,.

V. SCATTERING UNIT

Al

We define the scattering unit as a dipole plane with its empty space environment,
filled up by incident and transmitted EM field, self-consistently interacting with the
dipoles of the plane. Scattering parameters for a set of parallel planes can be derived
from corresponding ones, proper for a single plane. The importance of the unit may be
estimated by considering it a building brick of the exact vectorial-wave solution from
which more complex ones may be obtained by a synthesis process. The continuity of
all the wave and polarization vectors of the electromagnetic field propagating between
the adjoining units is a key to new complex solutions. .

The origin of the scattering unit is due to the Ewald principle of self-consistency?®
which is now applied, however, to a plane of electrons rather than to a single one,

It will now be convenient to give some attention to the two different kinds of sta-
tionary electromagnetic fields which appear in connection with the introduced unit.
The fields propagating inwards and outwards the scattering plane we will termed now
the mesofield. We differentiate this field, calling the two incident waves jointly the
incident mesofield while the two transmitted waves will be called together the trans-
mitted mesofield. At the boundary planes of adjoining units the mesofield should be
continuous with respect to all the wave and polarization vectors. At these planes,
which may be chosen arbitrarily, the transmitted waves from an upper dipole plane
become the incident waves for a lower one and vice versa.

The fields generated within a dipole plane due to the combined dipole radiation we
will term the epifield. The epifield in the first place depends on the factor and in
succession on the incident mesofield. For the case of o-polarization the epifield is a
function of the incident mesofield as a whole, while this dependence for r-polarization
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involves the actual composition of this incident field, such as it was shown in equations
(20). It is be noted that up to now a self-consistent contribution to the epifield has
been consequently denoted by ‘1/2 <--- >

The scattering unit function can be represented by means of a matrix which trans-
forms a complex vector of the two incident amplitudes [A**, B**] into a complex vector
of the transmitted amplitudes [A*", B*"]. This matrix will be defined in two versions
for the 7- and o-polarization states and shown only for the former state.

A¥ f, f, Afn

B"]"[f, ff]'[n"ﬂ]’ | (26)
where the two matrix elements f; and f, called the fransmission and reflection coeffi-
ctents, respectively, are given by

fi=f.+f,+1= cos ey exp(z. En)y where 4 &7 =&t €vs @7)
f,=f,—f, =isine exp(ica), Ep =Ex— Ey.

The just introduced angles &, and ¢y are exclusively defined for the 7-polarization
state. For the o-polarization state the two above angles are equal and will be deno-
minated by e, = g9 = €, = €,, while g, = 0.

All angles indicated by the letter ¢ applied in due context of the formalism allow
the energy of the scattering system to be conserved. Such angles were conceived by
Ewald® which predicted that both reflected and forward scattered waves should lag
in phase by an angle slightly greater than #/2 behind the incident wave to produce
a diminution in the transmitted amplitude and thus allowing for energy transfer into
the reflected beam. In the present treatment, generalized for the two incident waves,
no assumption of very small values of the respective phase lags, usually made in the
all actual X-ray diffraction theories, is necessary to satisfy conserva,ti,on of energy.

Taking into account that the dipole vibrations of both states of polarization are
independent, the formulas from now on will be shown only for the x-polarization state.
The corresponding ones for the o-polarization state are readily obtained through
substitution of the two angles ¢, and ¢4 by the unique angle ¢, as shown before and
the two versors &, and ég, by the unique versor &,. The relationship between the
amplitudes of two EM waves and the factors just introduced and angles for both
states of polarization is illustrated in Fig. 1 and Fig. 2.

The polarization vectors of the transmitted mesofield can be easily obtained by
means of the introduced matrix (26) as

AU = A 4 A% = [ A cosep + B i sin £5] exp(iex) €ar,
BY =B 4+ BY = [BI" coseg + A" i 5in eg) exp(i€x) €go. (28)
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Summarizing, the results obtained indicate that the plane of induced dipoles acts
as a plane wave transformer by changing in a steplike way the amplitude and phase
of all waves of - and o-polarization. This function of the dipoie plane as a stationary
solution for the two pairs of interacting waves enables us to look upon it as a umt of
scattering.

In a paper to follow we will show how the unit introduced can be used to analyze
scattering pattern obtained from a set of parallel dipole planes, representing the
crystal, where any of its planes can be considered as a scattering unit. Here, we shall
derive all necessary parameters for scattering from only a single unit.

Formally we define the scattering unit as a plane of induced dipoles with its
neighborhood of empty space filled up by the propagating field termed mesofield.
The scattering unit function is a stationary solution involving changes of amplitude
and phase for the two pairs of interacting waves with 7- and o-polarization states.
This function can be most adequately expressed by a set of complex factors, each of
them representing a ratio of two amplitudes for a chosen pair of waves. These ratios
can be defined in versions corresponding to both polarization states. Physically, most
significant is the amplitudes ratio of the incident wave B to the incident wave A,
This factor unequivocally defines the composition of the incident mesofield. Its value
is constant throughout the entire scattering plane and for the #-polarization is defined
as

Fr=BIAP = fexp(ips) with fr=|Fel, ¢n =Bl (29)

The important pair of ratios which relate amplitudes of the transmitted waves with
those of the incident ones is given by:

Ay =AY [A™ =q, explia,) with @, = | A, ¢x =a'f—al,
B, = B:-r/B:-rn =brexp(if,) with by =|B.|, B = ﬁ:rrrﬁ:r“ (30)

The two last factors can be expressed in a form more suitable for applications by
means of the two introduced angles ¢4 and ¢,. The new version of the above factors
reads now, after carrying out some simple calculations,

A, =[coses + FHisines] explic,) = ar expli(€ar + &4) ],
B, =|[coseg + Flisineg) exp(iex) = by expli(ep, + €x) ] (31)

While the total phase shifts due to the contribution of the scattering dipoles for
the two transmitted waves A" and B*" are respectively defined as o, and 8, by (30)
it may be an opportune moment to separate the previously obtained constant part
£ from the variable parts. This is done by introducing the following pair of new
variables, €., and £4,, given by two equations valid for the x-polarization state:
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Eaxr = Oy —Ey = arcsin|( f/a,)* sin €4 cos px],
Epx = Pr—Ex = arcsin{{ fr /by )" 8in €4 co8 @y ). (32)

The steplike changes in amplitude for both waves are defined by their absolute
ratios a, and b,. These latter are easily derived from eqs.(58, 59)

ay = [cos’eq+f} sin(2e0) sin @p+ £ sin’eg) 7z
by = [cos’eg—f;! sin(2e) sin px+ [ sin’eg] /2, _ (33)

Similarly to the transmission factors just introduced we define in addition two
other factors, conveniently called reflection factors. These latter are defined by the
amplitudes ratios of the transmitted waves to those of the incident ones but now both
propagating in space on the same side of the dipole plane. According to the equations
valid for 7-state of polarization and for 2 < 0 and for = > 0 we have

Ry =B /A" = rrexp(ips) = [FI! cos gg+ i 8in €5) exp(ic),
Sy = Al /B = s, exp(ioy) = [F; ' coses+ isin gp) explic,) (34)

where as before r, and s, are the absolute amplitudes ratios while p, and o, are the
relative phase shifts of the respective pairs of waves.

V1. SELF-CONSISTENCY AND CONSERVATION OF ENERGY

In paper I it was shown, for the single EM wave interacting with a plane of dipoles in
the o-polarization state, that the energy is conserved only when the Ewald principle of
self-consistency has been respected. We will extend the above proof to a more general
case of two such waves with an arbitrary elfiptical polarization. We will also verify the
validity of a reverse allegation, which should be ratified for two states, of polarization,
that satisfaction of the conservation of energy principle implies a self-consistent mode
of the interaction of the two waves with the plane of dipoles. A required proof by
help of the absolute amplitude ratios a, and b, given by (36) for the =-polarization
and supplemented by a corresponding pair a, and b, for the o-polarization is a trivial
one. We obtain the two following equalities:

a;+ =1+ f;
¢+ =141, (35)
from where we have for both polarization states
|72+ (BT =|AT*+ BT,
|AY|?+|B7|? = A ?+ | B2 (36)
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By adding the left and right sides of the latter equations we note that the energy
of all interacting waves is invariant in the act of scattering. The above equations,
separately analyzed, show that energy is also independently conserved for o- and
w-polarization components. The same is equally true for z-, y- and z-rectangular
components of radiation as shown by other easy-to-prove equations

|71+ BZ1? =|AZ|*+ | B2,
|AY1"+ IBY1? =| AP|+ | By,
|AT1+{B7|* = |AZ| 2+ | B, | (37)

The situation throngh which self-consistency is bound to produce conservation of
energy can be geometrically justified on Fig.2 by means of the appropriate Argand
diagram. Only the z-component will be shown out of the three pertinent ones which,
of course, is also identical with the o-component of the same polarization vector.
We assume that the incident mesofield M{* formed by the z-components of the two
incident traveling waves A and B*" and observed within the plane of dipoles. has a
unitary absolute value with the initial phase equal {0 zero. We note that the fact that
an end-point of the amplitude vector A" is also the beginning point of the amplitude
vector B, uniquely describes a content of the incident mesofield and will be termed
a complex lie point of the 2-field components and denoted T'". We note also that its
definition could equally be carried out by means of another pair of gmplitude vectors
AY and BY of the two transmitted traveling waves A" and B* which jointly form a
transmitted mesofield MY, This last field may obtained from the incident mesofield
from: .

MY = AY+BY = (A7 + BP") exp(i2e;) = MY exp(i2e;) (38)

which represents just another evidence of conservation of energy in tie present model
of scattering. The rotation angle ¢, depends on the actual epifield formed within the
dipole plane. The introduced complex tie point uniquely defines the scattering unit
function. Its utility comes from the fact that the amplitude of any wave out of four
interacting ones can be found if amplitudes of two others are known, as shown by the
Argand diagram in Fig. 2.

The presented pattern of the self-consistent mode of scattering is interesting from
still another point of view. If the time is reversed the transmitted waves become the
incident waves and vice versa but the general pattern of scattering remains unaltered.
Since the analysis for the other z- and y-components of the EM field is essentially
the same we consider the proof concluded.
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In order to check the reverse allegation, proposed before, we will proceed in another
direction. Under an assumption that the energy is conserved we will prove that the
sel-consistency principle is valid. We begin from bare results of the Hertz solution
which, we remind, are: '

e the dipole waves are formed immediately after the take-off,
e they are propagating in direction of the respective incident waves.

We repeat the assumption of self-consistency made in the first part that the field
formed by the dipole radiation and included into the two transmitted waves appears
as a pari of the total forcing in a form of standing field represented by the mean value
of these fields and called ’epifield‘ as before. We will obtain complex coeflicients which
transform the z-, y- and z-components of the incident mesofield into corresponding
components of the epifield.

From the last of equations (21) we obtain two equations

Atzr =Ain+ Aezﬁ =Aiﬂ+ fz(Aiﬂ+ Biu),
B! =B+ BY =B+ f.(A7"+B) + (39)

where f, is considered now an unknown complex coefficient. From here we get:
|AT?+|BY|? = | AT+ |BY |+ A7+ BY (L + £+ 2L7). (40)

If energy is to be conserved the term in parenthesis should be equal identically to
zero together with two other similar ones formed by the coefficients fr and f, for
respective z- and y-components of radiation. The general solutions are

G4+ 260 =02 £, =ifpe/(1— ifpe),
404260 =02 £, =ifp/(1— ifm),
£+ =02 £, =if/(1—ifp). 7 (41)

Due to the loss of phase information the above set of equations (41) is the maximal
result to be obtained from the energy conservation equation. Taking into account
the transversal character of the incident mesofield and the assumed orientation of the
scattering dipole plane in relation to the coordinate origin it is possible to show that
for = fpc0826, fp, = fpsin®@, and f,; = f, which confirm the earlier result (20).

We have just proved that the enmergy is conserved only when the Ewald self-
consistency principle has been respected. As the opposite assertion, with some ne-
cessary additional information, is equally true, then the equivalence of these two
principles which has been first demonstrated in paper I for the single electromagnetic
wave interacting with a plane of dipoles in the o-polarization is now being extended
for a more general case of the two such waves with an arbitrary elliptical polarization.
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The conclusion reached is that the Ewald self-consistency may be considered a ge-
neral principle valid for the EM scattering. In consequence, energy conservation may
be used to verify i the calculations for more complex scattering models made in a
self-consistent mode (without considering absorption) are correct. We have shown
that if self-consistency is taken into account the energy conservation is, per se, satis-
fied. The opposite allegation, on the other hand, is only partially true, because of the
simple reason, well known in crystallography, of the phase problem. Scalar formula-
tion of energy conservation does not involve enough information to be reworked into
a vectorial self-consistent mode of scattering. For just that reason the above relation
can be qualified as semi-equivalent and the Ewald self-consistency principle as a more
general one in, at least, the classical EM scattering.

VII. CONCLUSIONS

As we mentioned in the preceding section, the full analysis of results obtained and
comparison with presently used forms of the dynamical X-ray diffraction theories can
only be made after application of the introduced scattering unit for two more complex
models: ‘

® a set composed of equal and equidistant parallel planes of dipoles which, as
representing the most simple mode} of a crystal, should result in the modified
Bragg equation,

e a set of parallel dipole planes with a different dipole density ahd with irregular
spacing should enable one to define the self-consistent structure factor.

Joining the two above models we will have a representative model.of a crystal in
a two-beam model of the self-consistent scattering. The importance of the unit of
scattering introduced in these applications is based on the fact that it represents
a 'brick' of the exact solution from which all more complicated solutions may be
obtained by way of synthesis. A key to new solutions is the cont.inuft.y of mesofields
between the adjoining units. The microscopic solution rigorously obtained for a single
dipole plane can be generalized into more complex models in which a self-consistent
structure factor will be obtained in a non-primitive unit of scattering.
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Fig. 1

FIG. 1. Argand diagram of the complex amplitude vectors for o polarization state,
equivalent also for the complex amplitude vectors represented in the z-, y- and z-rectangular
components,
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FIG. 2. Argand diagram of the complex amplitude vectors for x polarization state.
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